
Activities in Active Debris Removal (ADR)

CleanSpace One Project

Muriel Richard, Anton Ivanov, Volker Gass, Claude Nicollier, Benoit Chamot <u>muriel.richard@epfl.ch</u>

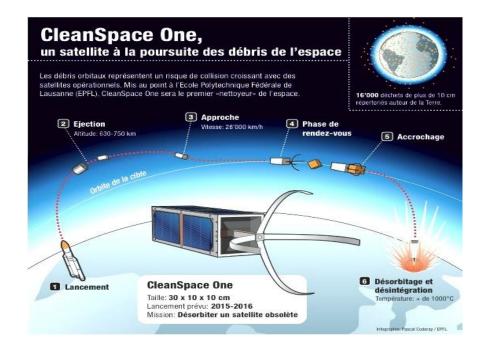
2012 Beijing Space Sustainability Conference

8-9 November 2012

Context

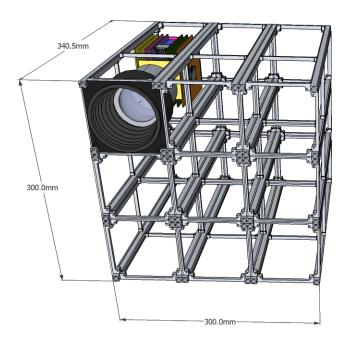
- Swiss Space Center launched SwissCube, the first Swiss student satellite, in September 2009
 - CubeSat family (10 x 10 x 10 cm3, 1 kg)
 - SwissCube is on 720-km SSO orbit, still operational
- After the launch, started research to develop technologies for Orbital Debris Removal of Non-Cooperative Debris (under a program called "*Clean-mE*")
 - Low level funding
- CONCLUSION: research and development most efficient when targeted to a concrete application

=> Start of *CleanSpace One* project



Project Objectives

- The objectives of the *CleanSpace One* project are to:
 - 1. Increase awareness, responsibility in regard to orbital debris and educate young people;
 - 2. Demonstrate technologies related to Orbital Debris Removal;
 - 3. De-orbit a known and politically acceptable debris.



CleanSpace One NanoSat

- CleanSpace One NanoSat
 - Remove 1 debris (> 10 cm, < 1m)
 - Based on a CubeSat 3U-6U platform as preliminary assumption
 - Preliminary (Phase 0) design done using CDF
 - VEGA or PSLV, launch ~ 2016-17
- Critical technologies provided by partner institutions (open to international cooperation). Satellite platform designed by students.
- Operations performed by students in partnership with larger and professional institutions

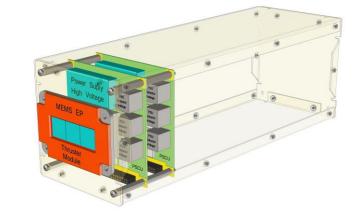
Technical Challenges for CleanSpace One

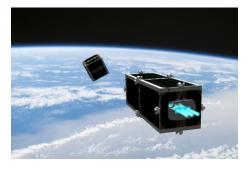
In orbit maneuvering and Rendezvous

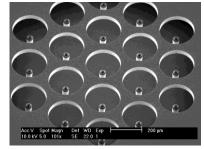
- Development of highly efficient propulsion system and attitude control system for a nano-satellite to minimize amount of fuel that need to be carried. Key factor is how close can a launch vehicle deliver our flight system to the target.

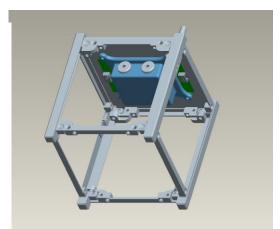
Target identification & tracking

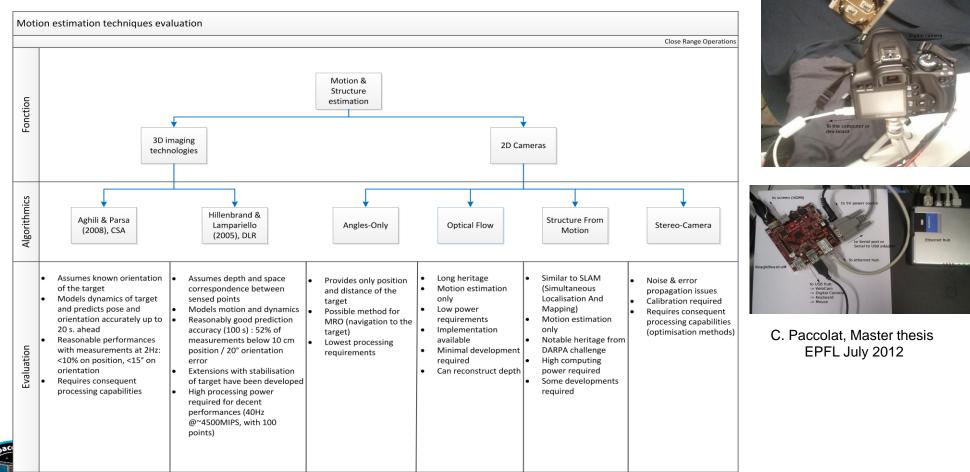

- Employ passive (Vision Based System) instruments to identify object and characterize its state (position and rotations)
- Perform in phase manoeuvring, with high level of autonomy
- Grappling, safe, versatile, adaptative and reliable
- Controlled de-orbiting maneuver
 - May not be any issue is CleanSpace One is small enough






Micro-propulsion system

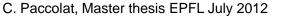

- Propulsion needs to remove SwissCube:
 - Orbit altitude matching ~ 120 m/s (from 500 km)
 - RAAN changes ~ 50 m/s
 - Inclination change ~ 100 m/s
 - De-orbit DV ~ 230 m/s (to get to 3-yr deorbiting orbit)
- Current work: MicroThrust (www.microthrust.eu)
 - FP7 activity with TNO, NanoSpace, QMUL, SystematIC and EPFL
 - Development of a breadboard in 2012, tests in 2013
 - Expected performances > 500 m/s at lsp 3000 s

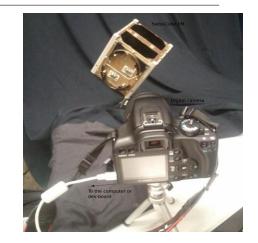


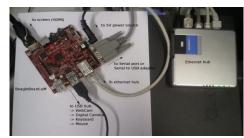
Vision based systems – current work

• Evaluating motion estimation algorithms

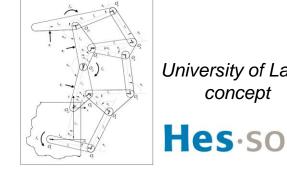
7


Vision based systems – current work

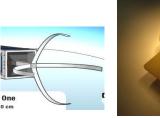

- Evaluating motion estimation algorithms
- With EPFL Prof. J-P. Thiran's laboratory, research developments for one 2-D camera and optical flow
 - Algorithms developed, first iteration
 - Current process: creation of representative images, characterisation of algorithm performances
- Hardware implementation
 - Cameras: have discussions with Space-X and with PhotonFocus
 - Evaluation of various CubeSat based computers



photon) focus



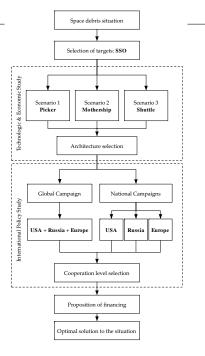
Capture mechanisms – current work


- Three designs in parallel:
- Underactuated mechanisms 1.
 - Work under/in cooperation with Prof. Lauria, HES-Geneva

- 2. **Dielectric polymer actuators**
 - Work under/in cooperation with Prof. H. Shea

- 3. **Compliant mechanisms**
 - Work in cooperation with F. Campanile, EMPA

University of Laval concept



Other related activities

- Mission architecture studies
 - High level mission architecture tool elaborated within a joint EPFL / MIT master thesis
 - Purpose is to evaluate technology options and mission cost versus mission architecture
- EC FP7 Call SPA.2013.2.3-02: "Security of space assets from in-orbit collisions"
 - This call asks for a demonstration mission, which purpose is to perform an in-orbit removal of debris in a low-cost manner
 - SSC proposes (low-cost) platform design
- Approach and capture test
 - Student project: 5 Master, 6 semester projects
 - Prototype demonstration of rendezvous maneuvers
 - Test in a swimming pool

Summary CleanSpace One

- The Swiss Space Center has started the development of critical and innovative technologies needed for Orbital Debris Removal
- The Swiss Space Center provides an efficient frame for supervising research and tailoring it to space applicable demonstrators
- Swiss Space Center's plans are meant to be in line with European space agencies and industries
- CleanSpace One project in fund raising phase, student team started in September 2012

