

A Broader View of Space Security

Brian Weeden

Director of Program Planning

Secure World Foundation

Overview

- Space security in a geopolitical context
 - Traditional "national security" lens and driver for space activities
 - Space support for military and intelligence activities on Earth
- Space security in an environmental context
 - Emergence of environmental threats as potentially more of an issue than intentional threats
 - Many new actors in space doing many different things
- Space security in a human context
 - Human and environmental security challenges on Earth
 - Role of space in tackling global challenges

What is security?

security (noun): the state of being free from danger or threat

Could actually mean:

- An actual measure of danger
- Set of procedures followed
- Feeling/perception of safety (or danger)

To whom does it apply to?

SPACE SECURITY IN A GEOPOLITICAL CONTEXT

a. Now Planned or in Immediate Prospect

- (1) <u>Ballistic Missiles</u>. A family of IRBM's and ICBM's is now in the latter stages of development. Components of these missiles can be used to develop other space vehicles, for both military and scientific use.
 - (2) Anti-ICBM's which are now being developed.
- (3) <u>Military Reconnaissance</u>. (see "Reconnaissance Satellites" section, paragraphs 20-23)

b. Feasible in the Near Future

- (1) Satellites for Weather Observation.
- (2) Military Communications Satellites.
- (3) Satellites for Electronic Countermeasures (Jamming).
- (4) Satellites as Aids for Navigation, tracked from the earth's surface visually or by radio.

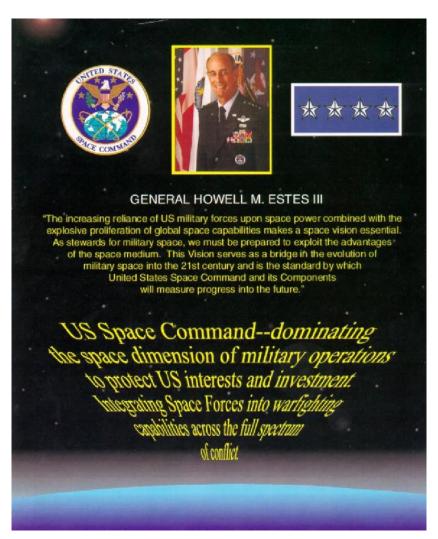
c. Future Possibilities.

- (1) Manned Maintenance and Resupply Outer Space Vehicles.
- (2) Manned Defensive Outer Space Vehicles, which might capture, destroy or neutralize an enemy outer space vehicle.
- (3) <u>Bombardment Satellites</u> (Manned or Unmanned). It is conceivable that, in the future, satellites carrying weapons ready for firing on signal might be used for attacking targets on the earth.
- (h) Manned Lunar Stations, such as military communications relay sites or reconnaissance stations. Conceivably, launching of missiles to the earth from lunar sites would be possible.

"Draft Preliminary Statement of U.S. Policy on Outer Space," U.S. National Security Council Planning Board, 20 June 1958

http://marshall.wpengine.com/wpcontent/uploads/2013/09/NSC-5814-Preliminary-U.S.-Policy-on-Outer-Space-18-Aug-1958.pdf

A sanctuary, of sorts


Name	Туре	Method	Target Orbit	Began	First Tested	Operational
IS/IS- M/IS-MU	co-orbital	single kinetic interceptor	LEO (<1600 km)	1961	1963-1982	1973
Skif	co-orbital	destructive laser	LEO (?)	1976	1987 (did not reach orbit)	-
Kaskade	co-orbital	multiple separate "missiles" w/ "space tugs"	MEO, GEO	1976	-	-
A-60	airborne	laser dazzler mounted on converted transport aircraft	LEO?	1981	-	-
Kontact	direct ascent (air launch)	single kinetic interceptor	LEO (< 600 km)	1983	1995?	-
Naryad-V	co-orbital	multiple separate "missiles" w/ "space tugs"	MEO, GEO	1985	1990 (partial failure)	-
Kamin	co-orbital	multiple individual small satellite "space mines"	LEO, MEO, GEO	1985	-	-
Lider	co-orbital	particle beams	LEO	1985	-	-
Amulet	direct ascent	single nuclear interceptor	LEO	1985	-	-

^{*} Only includes dedicated ASAT systems, and not dual-use systems with ASAT capability, such as the A-135 missile defense system

Source: Hendrickx (2016) "Naryad-V and the Soviet anti-satellite fleet," Space Chronicle, Vol 69 Sup 1; Podvig (2011), Russianforces.org

End of History

"Vision for 2020," United States Space Command, February 1997

https://www.scribd.com/doc/94609 208/United-States-Space-Command-Vision-for-2020

Rising China, resurgent Russia

- China is on a deliberate path to develop the full-spectrum of space capabilities as the US and Russia
 - Space for prestige
 - Space for industrial/technological development
 - Space for human and environmental security
 - Space for military purposes
- Evidence suggests Russia may have restarted some of its ASAT programs
- Rumors that Russian electronic warfare, cyber, and jamming capabilities have been on display in Ukraine and Syria

China's recent ASAT testing activities

Promoting Cooperative Solutions for Space Sustainability

Date of Test	Target Object	Interceptor Object	Interceptor Type	Amount of Trackable Debris Created	Notes
7/5/2005	None known	SC-19	direct ascent	0	Likely rocket test
2/6/2006	None known	SC-19	direct ascent	0	Likely flyby of an unknown orbital target
1/11/2007	FengYun 1C	SC-19	direct ascent	3,280	Successful intercept and destruction of an orbital target
1/11/2010	CSS-X-11 (ballistic)	SC-19	direct ascent	0	Successful intercept and destruction of a suborbital target
1/27/2013	Unknown (ballistic)	SC-19	direct ascent	0	Successful intercept and destruction of a suborbital target
5/13/2013	None known	?	direct ascent	0	Likely rocket test of a new system capable of reaching GEO
7/23/2014	None known	SC-19	direct ascent	0	Non-destructive test
10/30/2015	None known	Possible upgraded SC-19	direct ascent	0	Non-destructive test
	То	3,280			

TEL on launch pad in May 2013. Image © DigitalGlobe.

Korla Missile Test Complex Jan 2013 Image © DigitalGlobe.

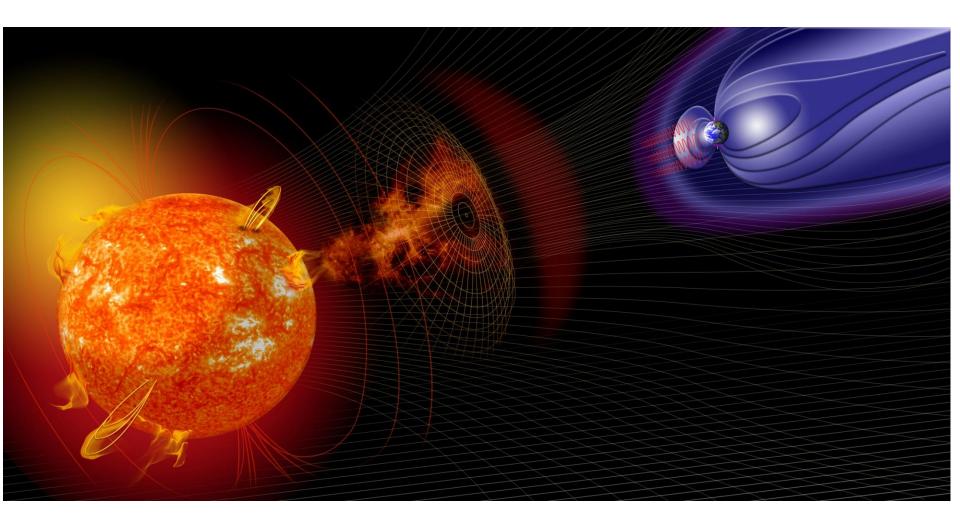
SECURE WORLD FOUNDATION Promoting Cooperative Solutions for Space Sustainability

Russian space EW in Ukraine

At 13.01hrs and again at 13.19hrs the SMM UAV was subjected to serious electronic jamming while flying over "DPR"-controlled Chermalyk (40km NE of Mariupol). Initial analysis of the SMM UAV flight log data indicated that the SMM UAV was subjected to military-grade GPS jamming. The Ukrainian Air Operations Liaison Officer to the "Anti-Terrorism Operation" ("ATO") headquarters in Sector 'M', who was immediately contacted by the SMM UAV Team, told the SMM at 13.24hrs that there was no jamming by the Ukrainian forces. The SMM UAV left the area and landed safely. This is the third serious interference with the movement of the SMM UAV and is an impediment to the fulfilment of the Mission's mandate.

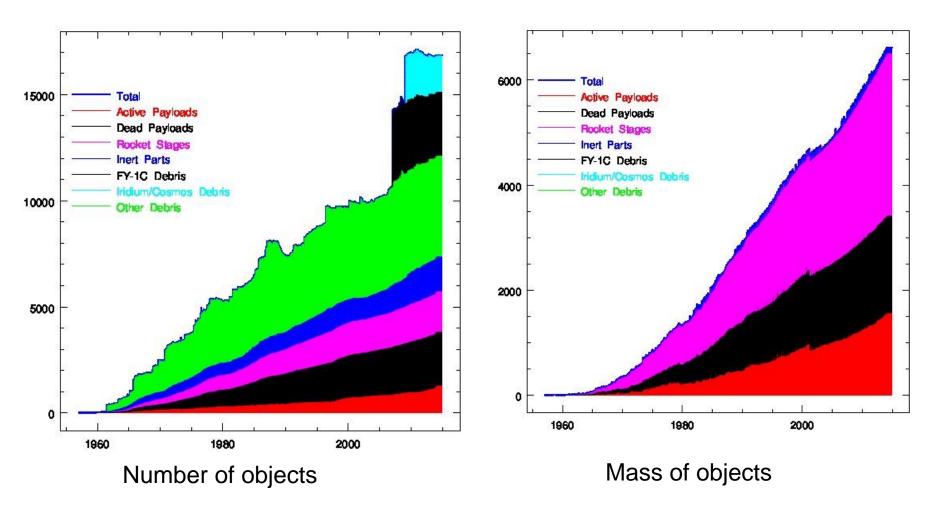
Source: Organization for Security and Cooperation in Europe

Russian R-330ZH Zhitel



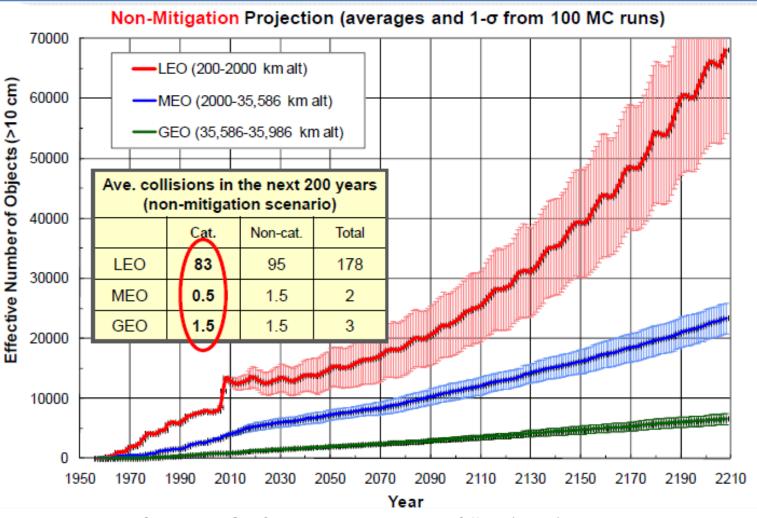
Source: Ukrainian journalist Yaroslav Krechko

SPACE SECURITY IN AN ENVIRONMENTAL CONTEXT



Space weather

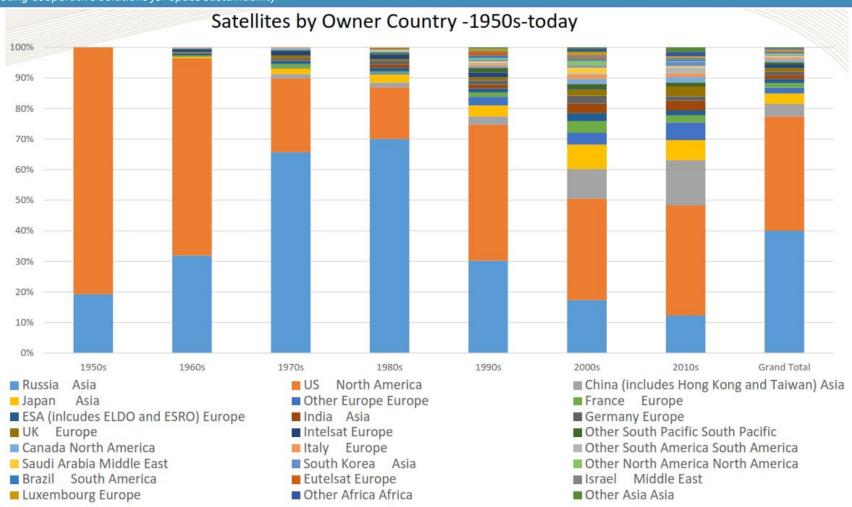
Long-term growth in space objects



Graphs from Jonathan's Space Page http://planet4589.org/

The next 200 years, if things stay the same

Promoting Cooperative Solutions for Space Sustainability



J-C Liou, NASA Orbital Debris Program Office (2009)

Space is becoming more international

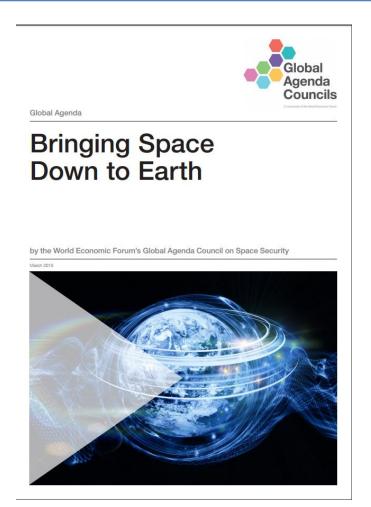
Promoting Cooperative Solutions for Space Sustainability

Adapted from IDA Global Trends in Civil and Commercial Space Study

Some of the 16,000+ planned new satellites

Promoting Cooperative Solutions for Space Sustainability

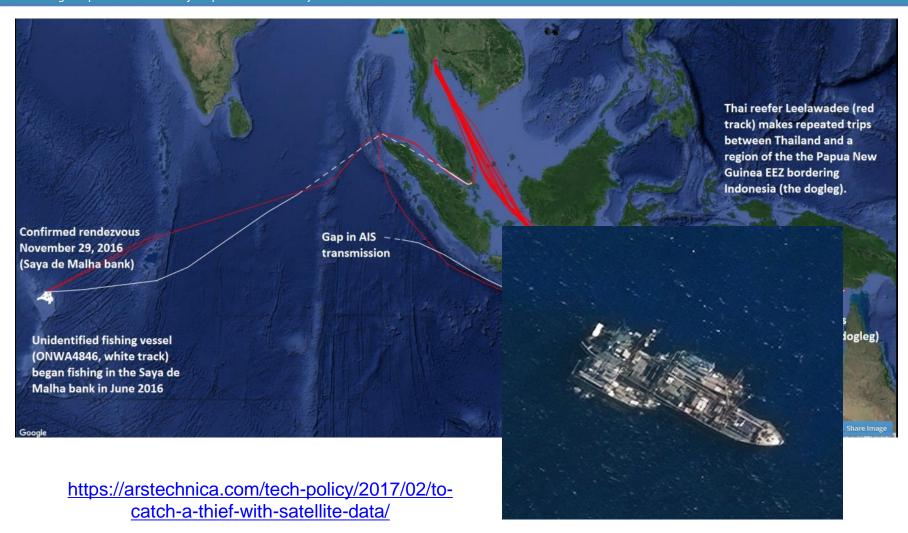
Company	# of sats	Altitude	Earth-Space	Space-Earth	Space-Space
Boeing	2956	1200 km	27.6-29.1 GHz 29.5-30.0 GHz	17.8-20.2 GHz	
Kepler	140	500-650 km	12.75-13.25 GHz 14.0-14.5 GHz	10.7-12.7 GHz	25.25-27.5 GHz
OneWeb	720	1200 km	14.0-14.5 GHz 27.6-29.1 GHz 29.5-30.0 GHz	10.7-12.7 GHz 17.8-18.6 GHz 18.8-19.3 GHz	
OneWeb	1280	8500 km	42.5-43.5 GHz 47.2-50.2 GHz 50.4-51.4 GHz	37.5-42.5 GHz	
SpaceX	4425	1110-1325 km	14.0-14.5 GHz 13.85-14.0 GHz 27.5-29.1 GHz 29.5-30.0 GHz 47.2-52.4 GHz	10.7-12.7 GHz 12.15-12.25 GHz 17.8-18.6 GHz 18.8-19.3 GHz 37.5-42.5 GHz	
SpaceX	7518	335-346 km	47.2-52.4 GHz	37.5-42.5 GHz	
Telesat	117	1000 km 1248 km	27.5-29.1 GHz 29.5-30.0 GHz	37.5-42.4 GHz	


SPACE SECURITY IN A HUMAN CONTEXT

Space can help tackle global challenges

Promoting Cooperative Solutions for Space Sustainability

- Broadband communications
- Access to education and healthcare
- Food security
- Human rights
- Climate change
- Disaster management
- Arctic governance
- Management of fisheries, forests, and water



http://www3.weforum.org/docs/WEF_Bringing_Space_Down_to_Earth.pdf

Catching illegal fishing (and slavers)

Promoting Cooperative Solutions for Space Sustainability

Possible evidence of war crimes

Promoting Cooperative Solutions for Space Sustainability

http://satsentinel.org/sites/default/files/reports/ Satellite Snapshot SouthSudan.pdf

Election fraud in Afghanistan

http://afghanistandataproject.org/projects/2014-audit-sat/

SUMMARY

Conclusions (?)

- All three of these contexts are operating simultaneously
 - No one is more right (or wrong) than the others
 - Interrelated and cross-linked
- Understanding the problem(s) in one context requires understanding problems in all three
- Solving the problem(s) in one context means crafting solutions that can resolve problem(s) in all three
- Example: space debris

THANKS. QUESTIONS?

bweeden@swfound.org