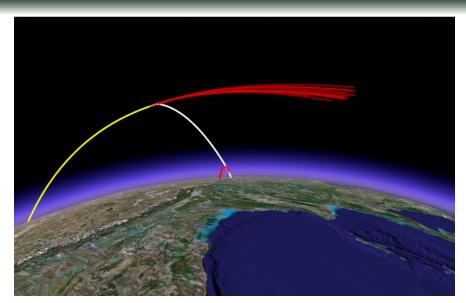


Protecting Space Assets Through Denial Deterrence

Brian Weeden
Technical Consultant
Secure World Foundation

Overview


- The challenge of protecting space assets
- Deterrence concepts
- Denial deterrence for space
- Examples from the IT world
- Towards a space protection strategy
- Key enabling technologies

THE CHALLENGE OF PROTECTING SPACE ASSETS

Kinetic threats to satellites

Chinese SC-19

Soviet Co-Orbital

US ASM-135

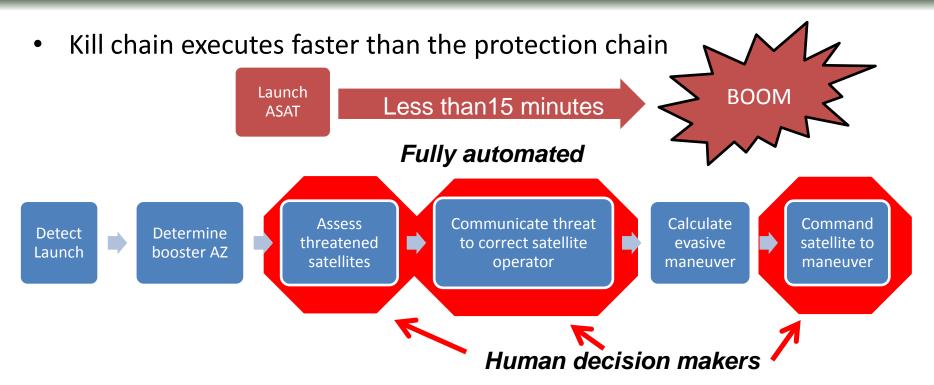
US Aegis SM-3

"Invisible" satellites?

Promoting Cooperative Solutions for Space Security

"The last Titan rocket, 4B-26, was launched on Oct 19. It deployed USA 186, a classified NRO satellite, into polar orbit. Hobbyists have observed the satellite and determined its orbit to be 264 x 1050 km x 97.9 deg. This confirms that the satellite is one of the imaging reconnaissance satellites, replacing a satellite launched in 1996."

Jonathan's Space Report, Nov 2005



28888 05 042A 2701 G 20080816020752690 17 25 0218065+573443 18 S 28888 05 042A 2701 G 20080816020811950 17 25 0329816+593344 28 S 28888 05 042A 2701 G 20080816020940570 17 25 0611645+523739 18 S

1 28888U 05042A 08229.08029740 .00005163 00000-0 48953-4 0 07 2 28888 97.9296 290.4131 0543547 73.9612 292.0741 14.75806181 00

The problem with reactive maneuvers...

- Could possibly solve the answer with on-board auto-detection systems
- Physics of last minute maneuvers almost impossible (delta-v)
- False alarms (Sun glints? Passing debris?) and spoofing prevention
- What's the risk of accidental airbag deployment?

...and pre-emptive maneuvers

Promoting Cooperative Solutions for Space Security

- Maneuvering high-value satellites before crossing into hostile territory would put them out of range of direct ascent ASATs....but:
 - What's the quality of your intelligence on the ASAT locations?
 - Are the ASATs mobile?
 - How do these avoidance maneuvers affect the ability of these satellites to conduct their missions?
 - Sun-sync: change in altitude requires change in inclination, both affect ground-track repeat
 - How many times can you do this before fuel is an issue?
 - 10 ASATs at < \$100M each force a \$1B satellite to maneuver 10 times for 100% of its fuel = Attacker Win

If a maneuvered satellite cannot fulfill its mission, the attacker wins!!

DETERRING ATTACKS ON SPACE ASSETS

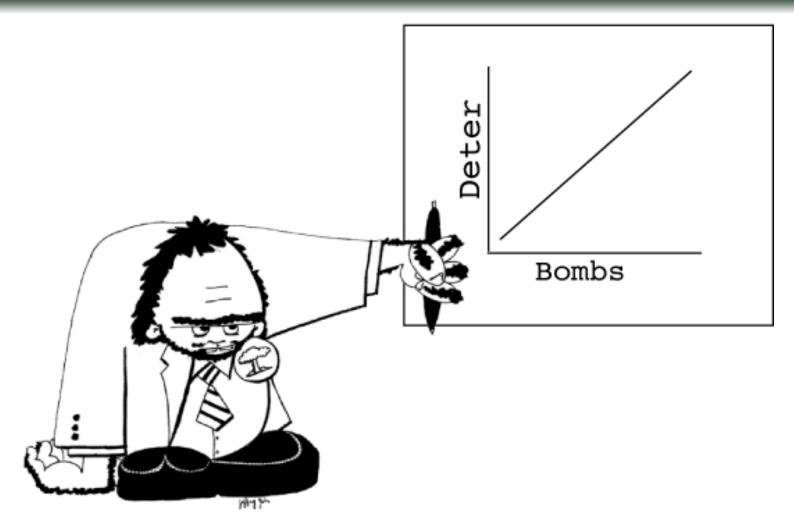
deterrence (noun):

- the act or process of discouraging actions or preventing occurrences by instilling fear or doubt or anxiety
- 2) a communication that makes you afraid to try something
- 3) a negative motivational influence

See also: discouragement, intimidation, disincentive

This is known as <u>reprisal deterrence</u>

Common forms of reprisal deterrence



The usual military approach to deterrence

Promoting Cooperative Solutions for Space Security

More Bombs Deter More. Next Slide Please.

My personal experience with deterrence success...

- Feb 2000 March 2004
- 275 alerts
- 12th Missile Squadron, Malmstrom AFB

Another way of looking at deterrence

Promoting Cooperative Solutions for Space Security

denial deterrence:

deterring attacks by removing any advantage an attacker would gain

Elements of denial deterrence for space assets

Promoting Cooperative Solutions for Space Security

Shift from one/few critical nodes to many nodes

- "A Multi-tiered Microsatellite Constellation Architecture" Astropolitics, Volume 6 Issue 2 (2008)
- Presented here by Dr. William Marshall of NASA AMES last year

Redundancy on multiple levels

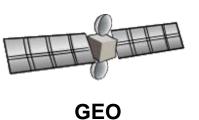
- Multiple satellites in same orbit regime and across different orbit regimes providing same function
- Robust links between space, air, sea and ground systems

Easy node replacement

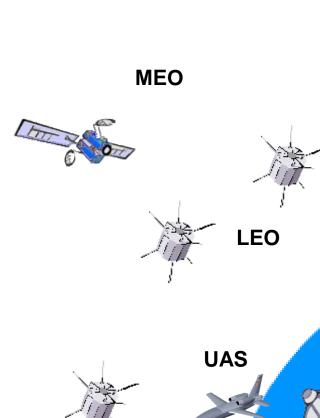
- Smaller, lighter, cheaper satellites
- Faster, more agile acquisition cycle
- Operationally Responsive Space

Many nodes in a satellite system

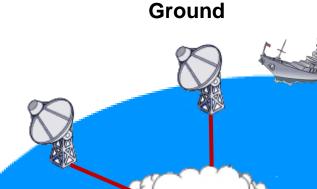
Promoting Cooperative Solutions for Space Security

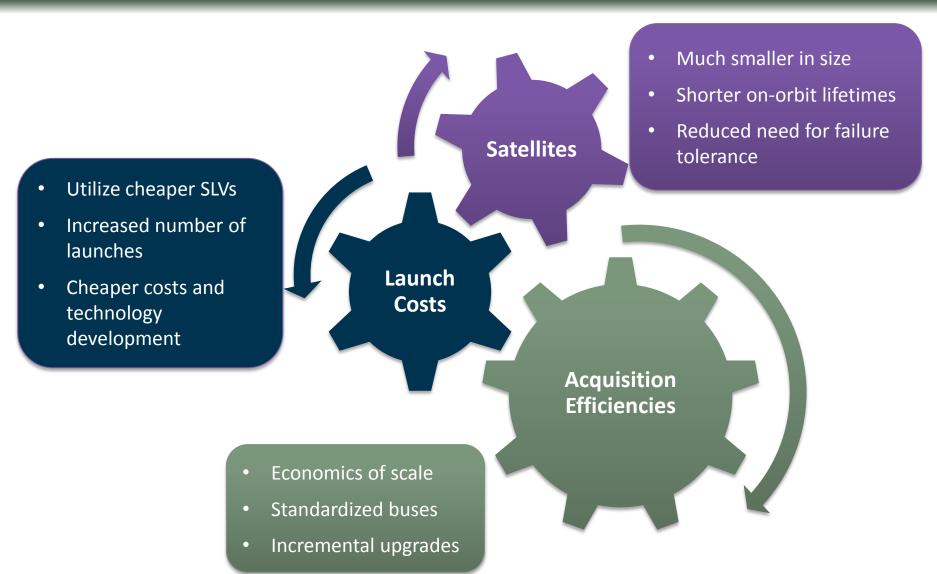

System	Notional Current		Proposed MMCA	
	# of Nodes	Size Each	# of Nodes	Size Each
Early Warning	10 GEO	2,500 kg	12 MEO	150 kg
			12 GEO	150 kg
Remote Sensing	10-12 LEO	15,000 kg	50 LEO	400 kg
			10 MEO	150 kg
Comm	6 HEO	2,000 kg	21 LEO	100 kg
	25 GEO	2,000 kg	80 GEO	100 kg

*numbers taken from Astropolitics paper by William Marshall




Redundancy on multiple levels


Promoting Cooperative Solutions for Space Security

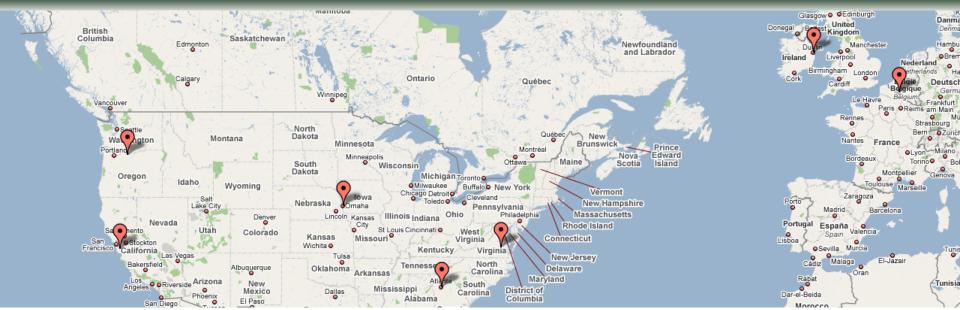

Internet

Landlines

Ease of nodal replacement

EXAMPLES FROM THE IT WORLD

Today's supercomputer



Google's Approach

- 400,000+ nodes made of small, cheap PCs (maybe more...no one knows for sure)
- Data and applications distributed across all nodes
- Separate power grids, separate data backbones

A POSSIBLE WAY FORWARD

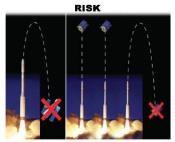
Towards a space protection strategy

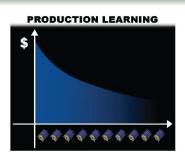
- Shift development of future space systems towards redundant constellations of microsatellites
 - Exploit acquisition and manufacturing advantages
 - Design systems that are interchangeable, interleaving, and flexible for the end user
- Funnel adversaries towards non-kinetic means.
 - Jamming, hacking, spoofing
 - Dangerous, yes, but probably non-destructive attacks which will leave asset intact and not impact long-term sustainability of space
- Focus on increasing defenses within this reduced attack surface

Inherent advantages

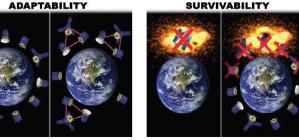
- Doesn't need to be specifically crafted for a certain adversary in a certain situation
- Don't need to know who the adversary is (only method of attack)
- Don't actually need the adversary to be deterred
 - if system is truly distributed and redundant then any kinetic attacks will have little to no effect on overall system performance

Enabling technologies


- Microsatellites
 - SurreySat
- Optical interferometry
 - ESA LISA Pathfinder
- Packetized, routable, delay-tolerant data traffic (i.e. "Routers in space")
 - IRIS (Internet Router Protocol in Space), UK-DMC Satellite
- Laser communication links
 - NFIRE, TSAT



I'm not the first one to think of this concept


- DARPA F6 program
- Future, Flexible, Fast,
 Fractionated, Free-flying

- Deterrence does have applications for protecting space assets, but not necessarily in the classical sense
- Denial deterrence and the shift towards distributed, redundant, microsatellite infrastructure is the primary means of defeating kinetic ASAT weapons
- Denial deterrence should be part of an overall Space Protection Strategy
- US must put as much intellectual analysis into space security concepts as it did Cold War strategies
 - See recent Council on Foreign Relations report on China

Many Thanks Any Questions?

brian.weeden@swfound.org