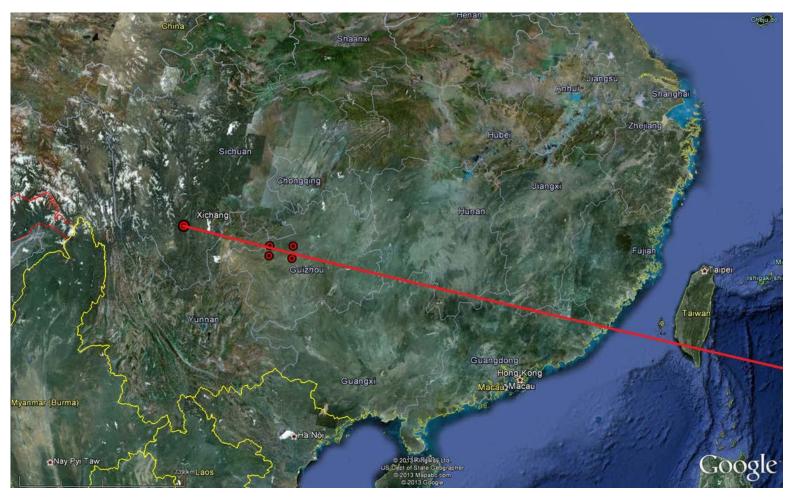
# An Open Source Analysis of China's Anti-satellite Testing in Space

Brian Weeden
Technical Advisor
Secure World Foundation





- What was launched from Xichang Satellite Launch Center in May 2013?
  - From which launch pad?
  - How high did it go?
  - What rocket was used?
- Summary of what's known about Chinese ASAT testing in space since the mid-2000s
- Not covered today: history of American and Russian ASAT testing in space & compares to what China is doing (see full report)


# SECURE WORLD FOUNDATION Promoting Cooperative Solutions for Space Sustainability

#### Official responses

- May 13, 2013, a rocket was launched from Xichang Satellite Launch
   Center
- Chinese government
  - "Chinese Academy of Sciences has conducted a high altitude scientific exploration test"
  - Sounding rocket, reached 10,000 km height
  - Released barium cloud to observe upper atmosphere
- US government
  - "...the launch appeared to be on a ballistic trajectory nearly to [GEO].
     We tracked several objects during the flight...and no objects associated with this launch remain in space"
- Beltway rumors
  - Was the test of a new ASAT weapon that could reach to GEO



#### **Official NOTAM**



Launch trajectory from the NOTAM (Source Spaceflight101.com) Image © 2013 Google Earth.



#### **Public photos**



Image of the May 13 launch from Xichang taken from Hong Kong (Image credit Wah!)



## **QUESTION 1: FROM WHICH LAUNCH PAD?**



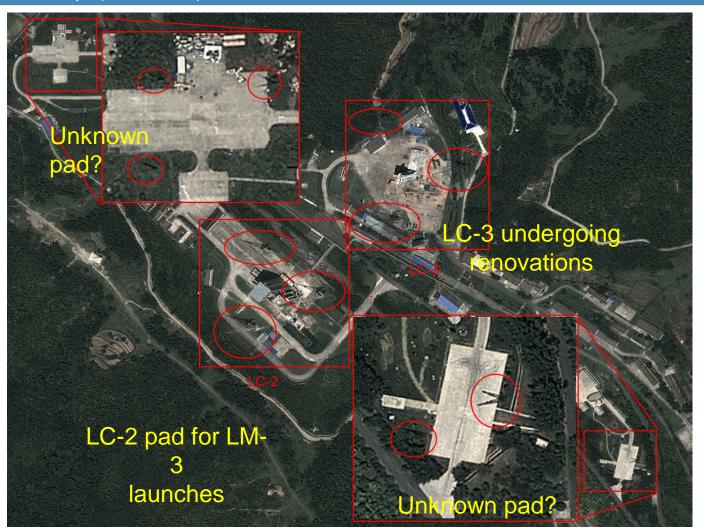
#### **Launch Complex 2 (LC-2)**



Imagery of LC-2 at Xichang. Images © 2013 Google Earth

#### Possible to turn around the pad for a sounding rocket launch in 12 days?




## **Example of lightning masts**



Lightning masts at Cape Canaveral Pad 39B. Image credit Wikimedia Commons (source)



#### **Lightning masts at Xichang**



Lightning masts at Xichang (circled in red). Image © 2013 Google Earth.



#### Northwest unknown pad



Historical imagery of the northwest pad at Xichang. Images © 2005, 2006, 2012, & 2013 Google Earth

Built to support mobile rocket launches, beginning some time in mid-2005



## Southeast unknown pad



Historical imagery of the southeast pad at Xichang. Images © 2006, 2012 Google Earth



#### Digitalglobe image of Xichang, April 3, 2013



Imagery of Xichang from April 3, 2013, showing a TEL on the southeast pad. Image © 2013 DigitalGlobe. All rights reserved.



## **Comparison to an IRBM TEL**



TEL on SE launch pad at Xichang April 3, 2013



DF-21C TEL elevated for launch. (Image credit Air Power Australia)

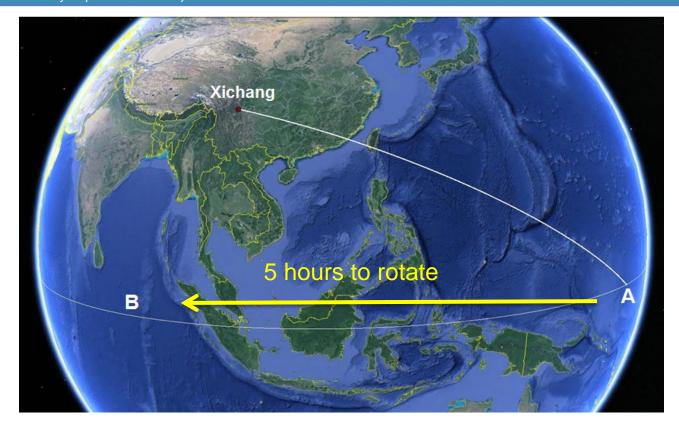


## **QUESTION 2: HOW HIGH DID IT GO?**

#### U.S. officials:

- "...the launch appeared to be on a ballistic trajectory nearly to [GEO]\*
- "[objects from the launch] re-entered the Earth's atmosphere above the Indian Ocean"




\*assumed to be 30,000 km for this analysis

The boundaries of the Indian Ocean. Image credit Wikimedia Commons



#### Launch trajectory, Earth's rotation, and time

Promoting Cooperative Solutions for Space Sustainability



The ground track of a rocket from Xichang to the Equator for a non-rotating Earth indicated by Point A and a rotating Earth indicated by Point B (source: <u>David Wright</u>). Image © 2013 Google Earth.

Flight time for a notional SLV to 10,000 km: 2.2 hours Flight time for a notional SLV to 30,000 km: 6.7 hours



## **QUESTION 3: WHAT ROCKET WAS USED?**



#### **Potential candidates**

 Based on the satellite imagery and launch pads, rocket needs to be of a mobile nature

#### DF-21C IRBM

- Estimated max horizontal range of 2,500 km or 1,250 km straight up
- Not a possibility for May 2013 launch

#### DF-31 ICBM

- Estimated max horizontal range of 12,000 km or 6,000 km straight up
- Possible to reach 10,000 km but not ~30,000 km



#### Mystery rocket program?

- After the 2007 Chinese ASAT test, there was much speculation about the heritage of the rocket used in that test as part of the SC-19 ASAT system
- Most of the speculation centered around the KT-1
  - Shown publicly at some Chinese trade shows, marketed as a "commercial" launcher
- Proposed heritage was DF-21C -> KT-1 -> SC-19
  - Didn't quite fit
  - Also claims that the SC-19 borrowed from the DF-31



#### China's rocket program

- Currently centralized in two state-owned corporations who are competitors
- Chinese Aerospace Science and Technology Corporation (CASC),
   First Academy of Launch Vehicle Technology (CALT)
  - Long March family of SLVs
  - Silo-based DF-4 and DF-4 ICBMs
  - DF-31/DF-31A ICBMs
- Chinese Aerospace Science and Industry Corporation (CASIC)
  - Responsible for nearly all of China's tactical ballistic missiles
  - DF-21 IRBMs



#### Kuaizhou: China's "quick vessel" to space



- September 25, 2013 launch from Jiuquan Satellite Launch Center
- Kuaizhou "Quick Vessel" solid-rocket SLV
- Part of China's "Operationally Responsive Space" program



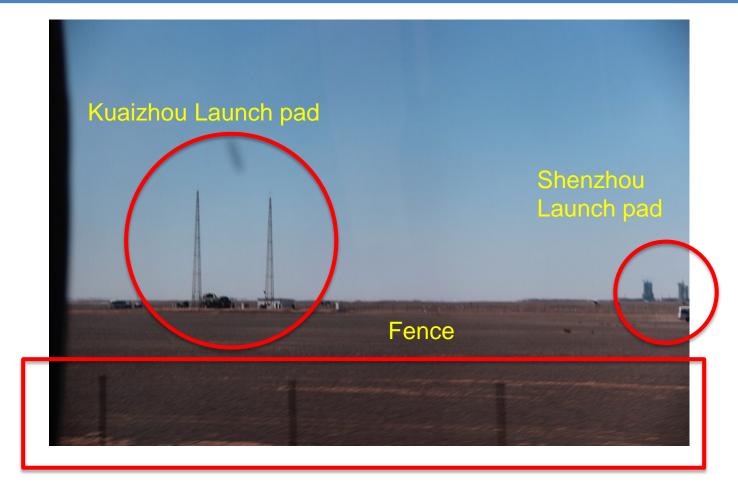
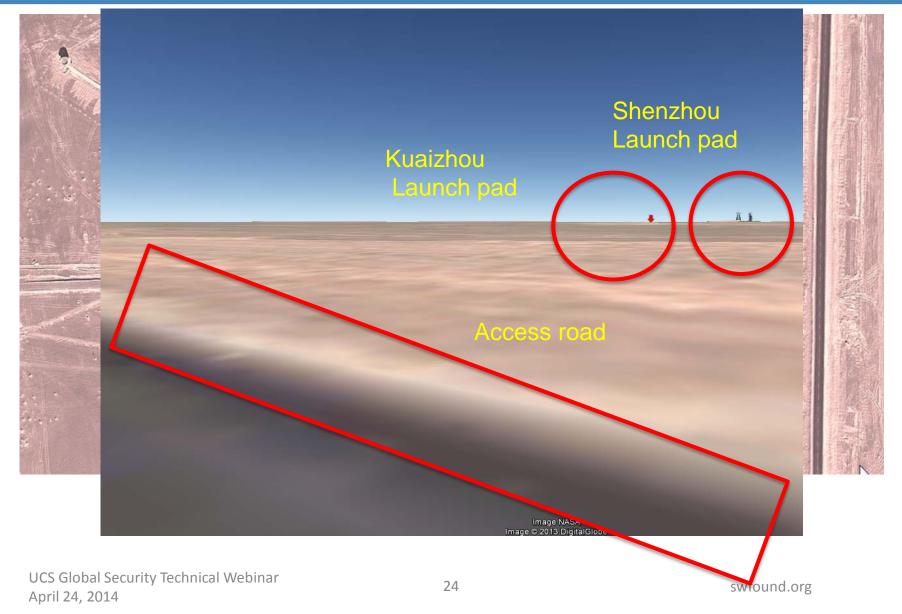

#### **Behind the scenes**



Image of the Kuaizhou launch taken from an access road near the launch site. (Source)




#### Is it authentic?





#### **Ground truth**





#### A plausible heritage

- From Chinese blogger kktt: "CASIC wanted to develop a new business in solid rocket SLVs by leveraging its expertise with solid rocket missiles"
  - KT-1: four-stage SLV 13.6 meters in length and 1.4 meters in diameter, tested twice unsuccessfully
  - KT-2: 1.7 meter diameter, never tested
  - KT-409: 1.4 meter diameter, four-stage rocket (three solid with a liquid upper stage), launched from a WS2500 TEL (same as the DF-21C)
  - Kuaizhou: 1.7 meter diameter, four-stage rocket (three solid with a liquid upper stage)

Was the May 2013 Xichang launch that of a Kuaizhou on a ballistic trajectory?



#### **Known SC-19 testing to date**

Launched from Xichang

Launched from Korla Missile Test Complex

Unknown launch site (Korla?)

| Date of Test                     | Target<br>Object        | Interceptor<br>Object | Interceptor<br>Type | Amount of<br>Trackable<br>Debris Created | Notes                                                       |
|----------------------------------|-------------------------|-----------------------|---------------------|------------------------------------------|-------------------------------------------------------------|
| 7/5/2005                         | None known              | SC-19                 | direct ascent       | 0                                        | Likely rocket test                                          |
| 2/6/2006                         | None known              | SC-19                 | direct ascent       | 0                                        | Likely flyby of an<br>unknown orbital target                |
| 1/11/2007                        | FengYun 1C              | SC-19                 | direct ascent       | 3,280                                    | Successful intercept and destruction of an orbital target   |
| 1/11/2010                        | CSS-X-11<br>(ballistic) | SC-19                 | direct ascent       | 0                                        | Successful intercept and destruction of a suborbital target |
| 1/27/2013                        | Unknown<br>(ballistic)  | SC-19                 | direct ascent       | 0                                        | Successful intercept and destruction of a suborbital target |
| Total Amount of Trackable Debris |                         |                       |                     | 3,280                                    |                                                             |



#### **Summary of findings for new ASAT**

- Most likely candidate launch pad for the May 2013 launch was one
  of the mobile pads identified by the lightning masts
- A TEL was imaged on the SE pad six weeks before launch
- The TEL appears to be similar to the WS2500 TEL used for the DF-21C
- If objects from the launch landed in Indian Ocean, then they had to have gone much higher than 10,000 km
- Existing ballistic missiles do not have the power to reach 10,000 km, let alone "nearly to GEO"
- Likely heritage from DF-21C and related to SC-19 and Kuaizhou



#### **Unanswered questions**

- Has the SC-19 finished testing, and does that mean it is now "operational"?
- If the May 2013 launch was a scientific experiment, when will the data/results be published and where?
- Is the rocket used in May 2013 the Kuaizhou or derived from it?
- Was the May 2013 launch the first in a series of new tests of a new system?
- Is there a plan to test this new system with an actual intercept?
- Is this new system reusing the same KKV from the SC-19?
- What threat does this system pose to satellite systems in HEO/MEO/GEO?

# Thank You Questions?

Brian Weeden bweeden@swfound.org