Debris-debris collision avoidance using medium power ground-based lasers

Jan Stupl¹, James Mason²,³, William Marshall²,³, Creon Levit²

² NASA Ames Research Center
³ Universities Space Research Association
¹ Center for International Security and Cooperation at Stanford University

2010 Beijing Orbital Debris Mitigation Workshop, 18-19 October, 2010, Beihang University, Beijing, People’s Republic of China
1) Introduction: approaches to mitigate the Kessler collision cascade

2) Existing laser debris removal proposals

3) A new laser debris-debris collision avoidance scheme

4) Summary
1) Introduction: approaches to mitigate the Kessler collision cascade

2) Existing laser debris removal proposals

3) A new laser debris-debris collision avoidance scheme

4) Summary
The Kessler Collision Cascade might be a reality*

source: Kessler & Cour-Palais, JGR 83(A6) 1978
Three options to solve the Kessler problem

1. debris mitigation plans (e.g. IADC guidelines)
2. debris removal
3. collision avoidance (active and/or non-active payloads)
Models indicate that debris mitigation alone will not be enough to prevent a cascading effect.

LEO Environment Projection for *No Future Launch Scenario*

1) Introduction: approaches to mitigate the Kessler collision cascade

2) Existing laser debris removal proposals

3) A new laser debris-debris collision avoidance scheme

4) Summary
Existing laser debris removal proposals are based on ablation induced recoil

adapted from: Phipps et al., J. Propulsion, 26:4(2010)
Ablation requires high threshold laser intensities

\[T_{\text{max}} = \sqrt[4]{\frac{AI_{\text{max}}}{\varepsilon_{\text{hg}}\sigma}} \]

A: debris absorption
I: laser intensity
\(\varepsilon\): debris emissivity
\(\sigma\): Stefan-Boltzmann constant

Example: boiling point of Aluminium: 2792 K, if \(\varepsilon=A\)
\[\rightarrow \text{minimum intensity } I=3.4 \text{ MW/m}^2 \]
Ablation requires high *threshold* laser intensities

\[
T_{\text{max}} = \sqrt[4]{\frac{AI_{\text{max}}}{\varepsilon_{\text{hg}}\sigma}}
\]

A: debris absorption
I: laser intensity
\(\varepsilon\): debris emissivity
\(\sigma\): Stefan-Boltzmann constant

Example: boiling point of Aluminium: 2792 K, if \(\varepsilon=1\)
→ *minimum* intensity \(I=3.4\) MW/m²
→ high laser power and/or large telescopes
Laser Debris-debris collision avoidance

Proposed systems require lasers which are not commercially available today.

<table>
<thead>
<tr>
<th>proposed by</th>
<th>based</th>
<th>Telescope diameter</th>
<th>average optical power</th>
<th>Pulse length</th>
<th>Pulse energy</th>
<th>Fluence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monroe 1993</td>
<td>ground</td>
<td>10m</td>
<td>5000kW</td>
<td>N/A continuous</td>
<td>N/A continuous</td>
<td>N/A continuous</td>
</tr>
<tr>
<td>Campell 1996</td>
<td>Project Orion</td>
<td>ground</td>
<td>3.5m</td>
<td>25kW</td>
<td>5ns</td>
<td>5kJ</td>
</tr>
<tr>
<td>Schall 2002</td>
<td>space</td>
<td>2.5m</td>
<td>100kW</td>
<td>100ns</td>
<td>1kJ</td>
<td>10 J/cm²</td>
</tr>
</tbody>
</table>
Monroe’s proposed continuous laser system could be used as a laser ASAT weapon

Time in [s] to heat up a 1mm Al plate to 673 K using a 10m / 5 MW system

Assumptions: Turbulence according to Hufnagel/Valley 5/7, AO: adaptive optics correction according to ABL ref.
High fluence pulses are potentially dangerous for solar cells, radiators and optics

Estimated threshold for catastrophic laser damage

<table>
<thead>
<tr>
<th>Components</th>
<th>Impulse and Stress (J cm(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors</td>
<td></td>
</tr>
<tr>
<td>Glass optics</td>
<td>8 (^4) (out of band)</td>
</tr>
<tr>
<td>Detectors:(^5)</td>
<td></td>
</tr>
<tr>
<td>Si:X</td>
<td>100</td>
</tr>
<tr>
<td>InSb or HgCdTe</td>
<td>2</td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>Solar cells: 30 (\mu m) silicon</td>
<td>8</td>
</tr>
<tr>
<td>and a 20 (\mu m) glass overcoat</td>
<td></td>
</tr>
<tr>
<td>Thermal Control</td>
<td></td>
</tr>
<tr>
<td>Thermal wrap:(^7), 10 layers of 0.25 mil aluminized mylar with 2 mil kapton overlayer</td>
<td>-</td>
</tr>
<tr>
<td>Radiator: silver on glass</td>
<td>8</td>
</tr>
<tr>
<td>8 mil thickness(^7), (A=0.07, \epsilon=0.8)</td>
<td></td>
</tr>
<tr>
<td>Structural</td>
<td></td>
</tr>
<tr>
<td>Anodized aluminium plate:</td>
<td></td>
</tr>
<tr>
<td>1 mm thick(^6), (A=0.16, \epsilon=0.76) with back-surface flat paint, (\epsilon=0.22)</td>
<td>(1.6 \times 10^3)</td>
</tr>
</tbody>
</table>

source: Federation of American Scientists, Laser ASAT Test Verification, 1991
1) Introduction: approaches to mitigate the Kessler collision cascade

2) Feasibility of laser debris sweepers

3) A new laser debris-debris collision avoidance scheme

4) Summary
Clearing the entire orbits is not necessary in order to avoid the Kessler cascade.

LEO Environment Projection for Postmission Disposal (PMD) and Active Debris Removal (ADR) Scenarios

- **PMD**
- **PMD + ADR02**
- **PMD + ADR05**

Collision avoidance requires high accuracy all-on-all conjunction analysis

High accuracy:
- avoids false alarms
- enables small avoidance maneuvers
Given high accuracy predictions, medium power lasers might be used to prevent the Kessler syndrome.

<table>
<thead>
<tr>
<th>Product</th>
<th>Prediction (days)</th>
<th>Accuracy (m)</th>
<th>Accuracy (m/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Ranging (ILRN "truth")</td>
<td>0</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Fence (raw direction cosines)</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>High Accuracy Catalog + SP</td>
<td>10</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>Public Catalog + SGP4</td>
<td>10</td>
<td>5000-25000</td>
<td>1000</td>
</tr>
<tr>
<td>Public Catalog + new scheme</td>
<td>10</td>
<td>500-2000</td>
<td>50-200</td>
</tr>
</tbody>
</table>

→ Compared to debris removal (~100m/s), for debris collision avoidance a small push is sufficient (~0.01m/s)
Our approach focuses on radiation pressure, not on ablation.

\[
\vec{F} = \frac{h \nu dN}{c \, dt} = \frac{IA}{c}
\]

- \(A\): illuminated debris area
- \(I\): laser intensity
- \(h\): Planck constant
- \(c\): speed of light
- \(dN/dt\): photon stream

→ no threshold intensity necessary, but area-to-mass ratio crucial.
A first case study assumes use of available equipment to mitigate debris collisions in sun synchronous orbits.

Case study: laser system

<table>
<thead>
<tr>
<th>Location</th>
<th>Antarctica (4 km altitude)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>10 kW continuous</td>
</tr>
<tr>
<td>Telescope</td>
<td>1.5 m diameter</td>
</tr>
<tr>
<td>Adaptive optics</td>
<td>ABL performance + guide star</td>
</tr>
</tbody>
</table>

source: IPG photonics

source: L3 communications
Resulting intensities depend on satellite orbit and the location of the laser system.

<table>
<thead>
<tr>
<th>Orbit</th>
<th>sun-synchronous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apogee</td>
<td>875 km</td>
</tr>
<tr>
<td>Inclination</td>
<td>98.4</td>
</tr>
<tr>
<td>Area</td>
<td>1 m²</td>
</tr>
</tbody>
</table>
Resulting intensities depend on satellite orbit and the location of the laser system.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>orbit</td>
<td>sun-synchronous</td>
</tr>
<tr>
<td>Apogee</td>
<td>875 km</td>
</tr>
<tr>
<td>Inclination</td>
<td>98.4</td>
</tr>
</tbody>
</table>
Case study shows promising range displacements

Range displacement illuminating for 1st half of each pass.

→ displacement sufficient in the context of accuracy

Stupl, Mason, Marshall, Levit Laser Debris-debris collision avoidance
Multiple illuminations increase range displacement

![Graph showing range displacement over time with multiple passes.](image-url)
Useful displacements are possible for a range of area-to-mass ratios.
A area-to-mass ratio of 0.1 or larger includes a large part of recently released debris.

1) Introduction: approaches to mitigate the Kessler collision cascade

2) Existing laser debris removal concepts

3) A new laser debris-debris collision avoidance scheme

4) Summary
Summary

Status:
- Laser ablation debris removal is possible in theory, but still a challenging and costly endeavor, as necessary lasers are not commercially available.
- High accuracy conjunction analysis is necessary for collision avoidance, but standard TLE data might be sufficient with modern propagator and fitting.
- First case study suggests that laser debris-debris collision avoidance possible with commercially available hardware.

To do:
- Look into all aspects of a collision avoidance system, determine optimal setup and location.
- Determine effective strategies of use to avoid the Kessler syndrome.
- Laser safety via international laser clearinghouse process?
Laser propagation:

High accuracy conjunction analysis using public TLEs:

Cascading Debris:

Additional Information

Laser propagation:

High accuracy conjunction analysis using public TLEs:

Cascading Debris:

BACKUP
Fitting a series of TLEs coupled with a modern propagator, higher accuracy predictions are possible.
Compared to public TLEs + SGP4, new fitting scheme predictions are significantly more accurate.
Given high accuracy predictions, medium power lasers might be use to prevent the Kessler syndrome.

→ Compared to debris removal (~100m/s), for debris collision avoidance a small push is sufficient (~0.01m/s)

Stupl, Mason, Marshall, Levit Laser Debris-debris collision avoidance