2010 Beijing Orbital Debris Mitigation Workshop
Hypervelocity Impacts
—Tiny debris, Severe damage

Jia Guanghui
School of Astronautics, Beihang University, China
Where is Spacecraft?

Do you feel safe to launch Spacecraft?

How will Spacecraft comeback?

Objects surrounds earth

Picture from nasa website
Hyper Velocity:
*Supperman, 100m race man, ~10m/s

- 9.58 Bolt (Jamaica) 2009-08-17 Berlin
- 9.69 Bolt (Jamaica) 2008-08-16 Beijing
- 9.72 Bolt (Jamaica) 2008-06-01 New York
- 9.74 Bowell (Jamaica) 2007-09-09 Italy
- 9.77 Bowell (Jamaica) 2006-08-18 Switzerland
- 9.77 Bowell (Jamaica) 2006-06-11 England
Hyper **Velocity**:

Car: ~340 m/s like air wave

- Car in highway: 120 km/hour, 33.3 m/s
- Most fast “Car”:
 Thrust SSC in England, 1228 km/h, 3 km/h faster than sound speed,
 With two Rolls Royce turbofan motor, 18 Litre/s.
Hyper **Velocity**:

Aircraft: 10000km/hour, 2777m/s

- 2009, June, X-43, Nasa, 3.65m, 1.2 ton
Hyper **Velocity**:
Spacecraft, 7.8km/s

- Spacecraft, 7.8km/s
- Aircraft, 2.777km/s
- Car, 0.34km/s, 340m/s
- Supperman, 10m/s

Hyper Velocity is a absolute concept?
Velocity is enough high, and depends on materials in impact also
Hyper Velocity:
 *orbital debris

- Orbital debris Speed same as to spacecraft;
- Four source:
 - Launch vehicle;
 - Mission –related;
 - Mission-after life of spacecraft;
 - Breakup of orbital objects.
- Attitude lower, flying faster, earth orbital object speed almost $\leq 7.8\text{km/s}$.

8:03 AM

Beihang University
Hyper Velocity impact material of Orbital Debris:

• Mostly, spacecraft made of AL-Alloy
• Such as 2024 Al, yield stress ~300MPa in static
• Impact Pressure ,~100GPa
• Hypervelocity: Impact Speed is so higher to produce higher pressure than the material yield stress.
Hypervelocity Impact kinetic energy:
\(~10\text{mm},\text{that is protected by shield}\)

- \(~10\text{mm Al-sphere (1.48g), 6.5km/s, }\frac{1}{2}m v^2\)
- \(~10\text{g, 2.4568km/s}\)
- \(~100\text{g, 0.7769km/s}\)
- \(~1000\text{g, 0.2456km/s, 884km/hour}\)
- \(~55\text{kg, 0.033km/s, 119km/h (highway)}\)
- \(~1500\text{kg, 0.00634km/s, 22.837km/h (downtown)}\)
Hypervelocity Impact kinetic energy: ~1mm, that happened to penetrate a spacecraft wall

- 1mm Al-sphere (1.4mg), 6.5km/s
- ~10g, 77.7m/s, 279km/hour
- ~55g, 33.1m/s, 119km/hour (highway)
- ~100g, 24.5m/s, 88km/hour
- ~1kg, 7.7m/s, 27km/hour (downtown)

From nasa web
Hypervelocity Impact roles

• Two objects in orbit
• Small to small, more smaller debris happened
• Small to big,
 more smaller debris appear inside bigger one, dis-function for big(service spacecraft)
 (that is concerned by shielding designer)
• Big to big,
 More smaller debris appear
 some medium debris appear
 few bigger debris appear
Simulation done...

- Simulation method
- Simple constructer impact
- Some cases...
*Simulation on Experimental Case from reference:

Al Sphere D=9.53mm, V=6.18km/s, Al Plate Thickness=2.2mm
Process of Sphere impact wall...

a) 0.2 μs
b) 0.4 μs
c) 0.6 μs

g) 1.4 μs
h) 1.6 μs
i) 1.8 μs
*Inner damage by Debris cloud behind wall

Case: D 9.53mm, V 6.18km/s, t 2.2mm al wall
Result: distance 45cm, 1mm al plate; 35cm, 2mm; 20cm, 4mm.
• Near bigger hole, far small hole?
• Thin plat against bigger ball, hole bigger in second plate (Wall)!
*1mm, 5km/s, w/o rotating of ball

- d=1mm, 10mmx10mmx1mm, h=0.01, SPH, 100552.plate-100000, ball-552个。
*4mm to 0.2mm AL+kev-epoxy

By Zhou. GD

Beihang University
*bolt impact at 4km/s
*Shape
cylinder debris
From
1: 2
to
4: 1
Work underway

• Improve simulation ability about hypervelocity impact;
• Develop more effective method to face more reality
<table>
<thead>
<tr>
<th>Velocity (km/s)</th>
<th>Plot 1</th>
<th>Plot 2</th>
<th>Plot 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

By Zh.XT
Summary or Some ideas

• Hypervelocity Impact almost only exists in earth orbit?!
• Impacting event via different mirrors, Experiment and simulation, which one is best choice?!
• Simulation method could give reasonable explain to the experimental phenomena;
• Exact simulation method could give data as experiment;
• Geometry model of Simulation is relative easy;
• Material model of hypervelocity impact is relative difficult.
Future work

• Get statistic data about different size of debris via hypervelocity impact simulation.
• Find the way to design the spacecraft to avoid lots debris appear in accident impact by big trunk.
Advice to improve
Thank you

Jiaguanghui@Buaa.edu.cn