Orbital debris removal by the active maneuvering spacecraft with tether net/gripper

BIN SONG
Aerospace System Engineering Shanghai,
Shanghai Academy of Spaceflight Technology
October 19, 2010
Orbital debris removal by the active maneuvering spacecraft with tether net/gripper

Outline

➤ Introduction
➤ Status of Home and Abroad
➤ Study Contents
➤ Current Status
➤ Next Steps
➤ Conclusions
Introduction

Background and Requirement

- **Increase in number.** Orbital debris will become a serious problem for low Earth orbit (LEO) and for the geosynchronous orbit (GEO).
 - Defunct satellites (either complete propellant reserve or fail)
 - Launch vehicle upper stages
 - Could not be re-orbited

- **Dangerous:**
 - Pose a serious collision risk
 - Generate a number of smaller bits of debris between large Orbit debris

- **Need for mitigation:**
 - Effective measures
 - Reasonable measures
Introduction

Objective

• Active removal of large orbit debris (LEO,GEO):
 – Avoid the excessive growth of orbit debris
 – One of most practical strategies

• Active maneuvering spacecraft:
 – Rendezvous and capture an inert, tumbling and non-cooperative target
 – Tow it to a graveyard orbit
 – Possess orbital maneuvering capability
 – Bus design
 – Payloads: tether net/gripper systems
Status of home and abroad

ESA: ROGER

- **Robotic Geostationary orbit Restorer:**
 - Approach and capture defunct satellites in GEO
 - Transfer it to a graveyard orbit
- **ROGER study (payload):**
 - Tether-net system
 - Tether-gripper system
Status of home and abroad

ESA: ROGER

Tether-net system

Tether-gripper system
Status of home and abroad

TECSAS

- **TEChnology Satellite for demonstration and verification of a Servicing System**
 - German Space Organization (DLR)
 - Canadian Space Agency (CSA)
 - Russian Mission Control Center (MCC)

- **Main objective:**
 - Unmanned on-orbit assembly
 - Unmanned on-orbit servicing
Status of home and abroad

TECSAS

- Demonstrate:
 - Far rendezvous
 - Close approach
 - Inspection fly around
 - Capture of a non-cooperative and cooperative client
 - Stabilization and identification of the behavior of the coupled satellites
 - Flight maneuvers
 - Manipulation on the captured client
 - Attitude changes by manipulator motions
 - Decoupling of service and client satellites
 - Formation flight
Japan: Space debris removal system

• Mission
 – Rendezvous with a target
 – Fly around it for inspection
 – Transfer the target to a disposal orbit

• Key technologies:
 – Cost-effective orbit transfer
 (electrodynamics tether)
 – Rendezvous
 – Angular momentum dissipation
 – Robot operation
Status of home and abroad

➢ Trend (Large orbit debris)

• Active removal
 – Active maneuvering spacecraft
 – Possible measure

• Key technologies:
 – Orbit rendezvous
 – Close approach and Station keeping
 – Capture
 – Transfer

• Payloads:
 – Tether net system
 – Tether gripper system
 – Robotic arm
Study contents

► General system argumentation
 • Concepts design and technical index
 • Spacecraft bus design
 – Based on a new design, payload accommodation
 • Payloads:
 – Tether net system
 – Tether gripper system

► Key component technologies
 • Exploration and identification of large orbit debris:
 – Radar sensors
 – Vision sensors (optical and infrared sensors)
 • Orbital rendezvous of large orbit debris:
 – Long-range (absolute navigation)
 – Short-range (relative navigation)
Study contents

- **Close approach and station keeping of large orbit debris:**
 - A very close distance (within the reach of tether net/gripper)
 - Strictly control to avoid collision
 - Satisfy the requirements of releasing attitude

- **Capture operation of large orbit debris:**
 - Tumbling and non-cooperative target, capture device
 - Attitude stabilization

- **Orbit transfer of large orbit debris:**
 - Transfer to a disposal orbit
 - Short tether
 - Pose a serious collision risk
 - To avoid collision
 - To tow the target, adjust the control system
Study contents

➢ Simulation

• **Numerical Simulation:**
 – Verify key technologies
 – Evaluate the controller’s performance
• **Hard in the loop Simulation:**
 – Exercise hardware-software interfaces
 – Assess the efficacy of algorithms
 – Expose algorithm to hardware error characteristics

➢ Experimental verification

• Capture operation experiment
• Payload releasing experiment
Current Status

• The major assumptions and requirements are as follows:
 – Removal targets: large orbit debris
 – Types of debris orbit: GEO, LEO
 – Graveyard orbit: IADC guidelines
 – Mass of targets: 1000kg~3000kg
 – Number of targets: approximately 5
 – Payloads: tether net/gripper systems

• Current work:
 – General system argumentation
 – Key technology
Next Steps

• Numerical Simulation:
 – Software design
 – Software test

• Hard in the loop Simulation:
 – Navigation devices
 – Payloads
Conclusions

• **Main missions**
 – Active maneuvering spacecraft with tether net/gripper system
 – Controlling the threat from large orbit debris

• **Review**
 – Related studies

• **Discuss**
 – Study contents, Key technologies, Next steps

• **Development issues**
 – Payload design
 – GNC during rendezvous, capture and towing phase
Thank you for your attention!