Activities in Active Debris Removal (ADR)

CleanSpace One Project

Benoit Chamot, Muriel Richard, Anton Ivanov, Volker Gass, Claude Nicollier

October 2012
Swiss Space Center launched SwissCube, the first Swiss student satellite, in September 2009
- CubeSat family (10 x 10 x 10 cm³, 1 kg)
- SwissCube is on 720-km SSO orbit, still operational

After the launch, started research to develop technologies for Orbital Debris Removal of Non-Cooperative Debris (under a program called “Clean-mE”)
- Low level funding

CONCLUSION: research and development most efficient when targeted to a concrete application
=> Start of CleanSpace One project
The objectives of the CleanSpace One project are to:

1. Increase awareness, responsibility in regard to orbital debris and educate young people;

2. Demonstrate technologies related to Orbital Debris Removal;

3. De-orbit a known and politically acceptable debris.
CleanSpace One NanoSat

- **CleanSpace One NanoSat**
 - Remove 1 debris (> 10 cm, < 1m)
 - Based on a CubeSat 3U-6U platform as preliminary assumption
 - Preliminary (Phase 0) design done using CDF
 - VEGA or PSLV, launch ~ 2016-17

- Critical technologies provided by partner institutions (open to international cooperation). Satellite platform designed by students.

- Operations performed by students in partnership with larger and professional institutions
Technical Challenges for CleanSpace One

- In orbit maneuvering and Rendezvous
 - Development of highly efficient propulsion system and attitude control system for a nano-satellite to minimize amount of fuel that need to be carried. Key factor is how close can a launch vehicle deliver our flight system to the target.

- Target identification & tracking
 - Employ passive (Vision Based System) instruments to identify object and characterize its state (position and rotations)
 - Perform in phase manoeuvring, with high level of autonomy

- Grappling, safe, versatile, adaptative and reliable

- Controlled de-orbiting maneuver
Micro-propulsion system

• Propulsion needs to remove SwissCube:
 - Orbit altitude matching ~ 120 m/s (from 500 km)
 - RAAN changes ~ 50 m/s
 - Inclination change ~ 100 m/s
 - De-orbit DV ~ 230 m/s (to get to 3-yr deorbiting orbit)

• Current work: MicroThrust (www.microthrust.eu)
 - FP7 activity with TNO, NANoSpace, QMUL, SystematIc and EPFL
 - Development of a breadboard in 2012, tests in 2013
 - Expected performances > 500 m/s at Isp 3000 s
Vision based systems – current work

• Evaluating motion estimation algorithms
 - 2D: Angles only, optical flow, structure from motion, etc.

• With EPFL Prof. J-P. Thiran’s laboratory, research developments for one 2-D camera and optical flow
 - Algorithms developed, first iteration
 - Current process: creation of representative images, characterisation of algorithm performances

• Hardware implementation
 - Cameras: have discussions with Space-X and with PhotonFocus
 - Evaluation of various CubeSat based computers

C. Paccolat, Master thesis EPFL July 2012
Capture mechanisms – current work

• Three designs in parallel:

1. Underactuated mechanisms
 - Work under/in cooperation with Prof. Lauria, HES-Geneva

2. Dielectric polymer actuators
 - Work under/in cooperation with Prof. H. Shea, EPFL

3. Compliant mechanisms
 - Work in cooperation with F. Campanile, EMPA
Other related activities

- **Mission architecture studies**
 - High level mission architecture tool elaborated within a joint EPFL / MIT master thesis
 - Purpose is to evaluate technology options and mission cost versus mission architecture

- **EC FP7 Call SPA.2013.2.3-02: “Security of space assets from in-orbit collisions”**
 - This call asks for a demonstration mission, which purpose is to perform an in-orbit removal of debris in a low-cost manner
 - SSC proposes (low-cost) platform design

- **Approach and capture test**
 - Student project: 5 Master, 6 semester projects
 - Prototype demonstration of rendezvous maneuvers
 - Test in a swimming pool

B. Chamot, Master thesis MIT August 2012
Summary *CleanSpace One*

- The Swiss Space Center has started the development of critical and innovative technologies needed for Orbital Debris Removal
- The Swiss Space Center provides an efficient frame for supervising research and tailoring it to space applicable demonstrators
- Swiss Space Center’s plans are meant to be in line with European space agencies and industries
- *CleanSpace One* project in fund raising phase, student team started in September 2012
Thank you
Vision based systems – current work

Motion estimation techniques evaluation

<table>
<thead>
<tr>
<th>Function</th>
<th>Algorithms</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3D imaging technologies</td>
<td>Assumes known orientation of the target</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assumes depth and space correspondence between sensed points</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Models dynamics of target and predicts pose and orientation accurately up to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 s. ahead</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reasonable performances with measurements at 2Hz: <10% on position, <15° on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>orientation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requires consequent processing capabilities</td>
</tr>
<tr>
<td></td>
<td>2D Cameras</td>
<td>Provides only position and distance of the target</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long heritage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motion estimation only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low power requirements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Implementation available</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimal development required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can reconstruct depth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Similar to SLAM (Simultaneous Localisation And Mapping)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motion estimation only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Notable heritage from DARPA challenge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High computing power required</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Some developments required</td>
</tr>
<tr>
<td></td>
<td>Aghili & Parsa (2008), CSA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hillenbrand & Lampariello (2005), DLR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angles-Only</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optical Flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structure From Motion</td>
<td></td>
</tr>
</tbody>
</table>