An ESA View of the IADC

Heiner Klinkrad
ESA Space Debris Office
IADC Background Information

IADC history:
- 1989: position paper on orbital debris by the US Interagency Group Space
- 1989: directive to NASA by the US Security Council to talk to all spacefaring nations on common steps towards space debris mitigation
- IADC#1: bi-lateral NASA-ESA meeting at Rolleboise/France, Oct. 1987
- IADC#9: IADC inauguration meeting with NASA, NASDA, RSA and ESA, at Darmstadt/Germany, Apr. 1993
- IADC#29: hosted by DLR in Berlin/Germany, Apr. 2011

IADC purpose:
- exchange information on space debris research activities between members, to facilitate opportunities for cooperation in space debris research
- review progress of cooperative activities
- identify space debris mitigation options

IADC membership:
- ASI, CNES, CNSA, DLR, ESA, ISRO, JAXA, NASA, NSAU, ROSCOSMOS, UK Space Agency, [CSA]
key facts:

- members are national or international space agencies that perform space activities and actively contribute to space debris research; new members may be included upon unanimous decision.
- the work program is governed by a steering group (SG) and performed in 4 working groups (WG); membership in SG and WG 4 is mandatory.
- IADC technical meetings are held annually (SG meetings semi-annually); they are chaired by the head of delegation of the hosting member.
- the IADC Chair is the head of delegation of the hosting member; s/he is supported by a secretariat (function provided by a SG member).
IADC Terms of Reference (1)

- **SG terms of reference:**
 - the SG is chaired by the head of delegation of the hosting member
 - mandatory representation in the SG by all member delegations
 - acceptance of new IADC members (unanimous decision required)
 - the SG coordinates IADC WG’s and may assign action items
 - the SG organizes IADC meetings, defines new work areas, and represents IADC in other organizations

- **WG-1 terms of reference (measurements)**
 - review research efforts in measurement techniques for space debris & meteoroids (ground- and space-based)
 - identify opportunities for cooperation (e.g. beam-park experiments)
 - serve as platform for information exchange and observation planning

- **WG-2 terms of reference (environment & database)**
 - review research efforts in environment modelling and related databases
 - identify opportunities for cooperation (e.g. re-entry prediction campaigns)
 - serve as means of information exchange on environment modelling
IADC Terms of Reference (2)

- WG-3 terms of reference (protection)
 - review efforts in HVI research and protection (HVI testing, hydro-code simulations, damage characterization & prediction, shield designs)
 - identify opportunities for cooperation (e.g. common test procedures)
 - serve as platform for information exchange (e.g. protection manual)

- WG-4 terms of reference (mitigation)
 - review research efforts in space debris mitigation (debris sources, mitigation & remediation techniques, collision & re-entry risk reduction)
 - identify opportunities for cooperation (e.g. IADC mitigation guidelines)
 - serve as means of information exchange on debris mitigation

- common issues:
 - SG chairs have 1 year term (with no formal deputy chair)
 - WG chairs have a 2 year term (with a prior 2 year deputy chair function); new WG deputy chairs are assigned by the SG every 2 years
 - the IADC host prepares the SG MoM and the overall MoM, based in inputs by the WG chairs
annexes of the IADC Terms of Reference
- Annex 1: criteria for membership in IADC
- Annex 2: points of contact of IADC members
- Annex 3: format of IADC meetings and procedures for WG’s
- Annex 4: WG chair persons and deputies
- Annex 5: membership in IADC SG and WG’s
- Annex 6: IADC data exchange on re-entry risk objects
- Annex 7: role of the IADC secretariat
- Annex 8: IADC Web site (and Web master)

case study “IADC re-entry prediction campaigns”
- purpose: test re-entry prediction tools & procedures of IADC members for potential risk objects, at least once every year
- procedure: test articles, agreed within the IADC SG, are selected from the US SSN Catalog and predicted/observed up to their re-entry
- output: the SG issues a campaign summary report in a prescribed format
IADC Re-Entry Predictions (1)

- **scope:**
 - as part of their terms of reference (Annex 6), IADC fosters the exchange of data on potentially hazardous re-entry objects

- **history:**
 - the risk potential of re-entries was recognized at the occasion of Cosmos 954 (Jan. 1978), Skylab (July 1979), and Salyut 7 (Feb. 1991)
 - an initial, limited IADC data exchange was realized for the Cosmos 398 re-entry (Dec. 1995); a more formalized data exchange was later implemented for the re-entry of the Chinese FSW-1-5 capsule (March 1996)
 - in 1997 plans were adopted to develop a web-based IADC Re-Entry Events Database to facilitate the exchange of information on a re-entry object, on its orbit, and on its predicted re-entry time and location

- **implementation:**
 - the IADC Re-Entry Events Database is hosted by the European Space Operations Centre of ESA; it is operational since 1998
 - all data exchange through a Web interface of the IADC Re-Entry Events Database (⇒ orbits states and re-entry predictions)
 - opening & closing of a campaign via DBA (based on SSN/SSS re-entry data)
IADC Re-Entry Prediction (2)

- re-entry risk object qualification criteria:
 - the object or parts of it may survive to cause potential damage, or
 - the entry event may cause radioactive contamination

- past IADC re-entry prediction campaigns (12 in total):
 - Inspektor (D, 1998), GFZ-1 (D, 1999), Soyuz stage (RU, 2000), Vostok stage (RU, 2002), Cosmos 389 (RU, 2003), Cosmos 2332 (RU, 2005), Coronas F (RU, 2005), Cosmos 1025 (RU, 2007), Delta-2 stage (USA, 2007), EAS (USA, 2008), Molniya 3-39 (RU, 2009), Vostok stage (RU, 2010)

- IADC re-entry campaign 2008-1:
 - Early Ammonia Servicer EAS (98-067BA, #31928)
 - launched on STS-105 on Aug. 10, 2001, and installed on ISS truss P-6
 - jettisoned from ISS on July 23, 2007, during EVA
 - mass: 640 kg; dimensions: 2.5m × 1.2m × 1.7m
 - orbit at campaign start on October 22, 2008: 216 km × 230 km at 51.64° inclination
IADC Re-Entry Prediction (3)

- Mean perigee and apogee alt. (km): 230 km, 216 km
- Campaign duration: 22-Oct-2008 to 03-Nov-2008

Graph showing the evolution of mean perigee and apogee altitudes over time from October 2008 to November 2008.
IADC Re-Entry Prediction (5)

“impact” location
35°S, 176°E

“80 km alt.” location
48°S, 151°E
EAS Campaign Summary

<table>
<thead>
<tr>
<th>Agency</th>
<th>All Predictions Count</th>
<th>Error Δt (%)</th>
<th>Last 48h Predictions Count</th>
<th>Error Δt (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASI</td>
<td>24</td>
<td>5.76</td>
<td>11</td>
<td>8.53</td>
</tr>
<tr>
<td>BNSC</td>
<td>9</td>
<td>18.89</td>
<td>5</td>
<td>9.18</td>
</tr>
<tr>
<td>CNES</td>
<td>12</td>
<td>5.96</td>
<td>4</td>
<td>7.92</td>
</tr>
<tr>
<td>CNSA</td>
<td>20</td>
<td>7.35</td>
<td>11</td>
<td>4.85</td>
</tr>
<tr>
<td>DLR</td>
<td>16</td>
<td>9.06</td>
<td>7</td>
<td>6.79</td>
</tr>
<tr>
<td>ESA</td>
<td>20</td>
<td>8.50</td>
<td>12</td>
<td>7.75</td>
</tr>
<tr>
<td>ISRO</td>
<td>28</td>
<td>7.30</td>
<td>13</td>
<td>8.20</td>
</tr>
<tr>
<td>JAXA</td>
<td>7</td>
<td>4.28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NASA</td>
<td>7</td>
<td>6.51</td>
<td>4</td>
<td>6.37</td>
</tr>
<tr>
<td>ROSCOSMOS</td>
<td>27</td>
<td>5.54</td>
<td>13</td>
<td>5.30</td>
</tr>
<tr>
<td>total</td>
<td>170</td>
<td></td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

- Pass of 80 km altitude interface at 04:51 UTC on Nov. 3, 2008 (SSN information)
- Assessed ground impact at time 04:58 UTC, and location 35°S and 176°E
- IADC re-entry database statistics: 6d13h total log-on time of 10 IADC Members; 170 predictions and 160 orbit determinations were entered
Conclusions

- IADC has representatives of all major spacefaring nations (12 members)
- IADC is regarded as the international body of technical expertise on space debris mitigation and space debris environment remediation
- the „IADC debris mitigation guidelines“ influenced many national and international guidelines, requirements, and standards (e.g. UN Guidelines on Space Debris Mitigation and ISO 24113 standard)
- the Web-based IADC Re-Entry Events Database has proven to be a valuable tool for the timely exchange of technical information required to perform reliable re-entry predictions of potentially hazardous space objects
- the technically oriented terms of reference of IADC, and the high-quality technical output (e.g. „IADC protection manual“) are part of the IADC success story