Space Sustainability: An Overview

Victoria Samson, Secure World Foundation

Presentation for LSAS Aerospace and Defense Workshop

Tokyo, Japan

July 10, 2024

About Secure World Foundation

- **SWF** is a *private operating foundation* that promotes cooperative solutions for space sustainability.
- **Our vision:** The secure, sustainable, and peaceful uses of outer space that contribute to global stability on Earth.
- Our mission: Work with governments, industry, international organizations, and civil society to develop and promote ideas and actions to achieve *the secure, sustainable, and peaceful uses of outer space* benefiting Earth and all its peoples.

Space Sustainability Challenges

- A lot more activity happening in space
 - Growing number & diversity of space actors (governments and commercial companies)
 - Growing number & diversity of space activities
- Negative externalities could have widespread impacts for everyone
- Very few hard "rules" about what is and isn't allowed

How can we ensure space is usable for future generations and users??

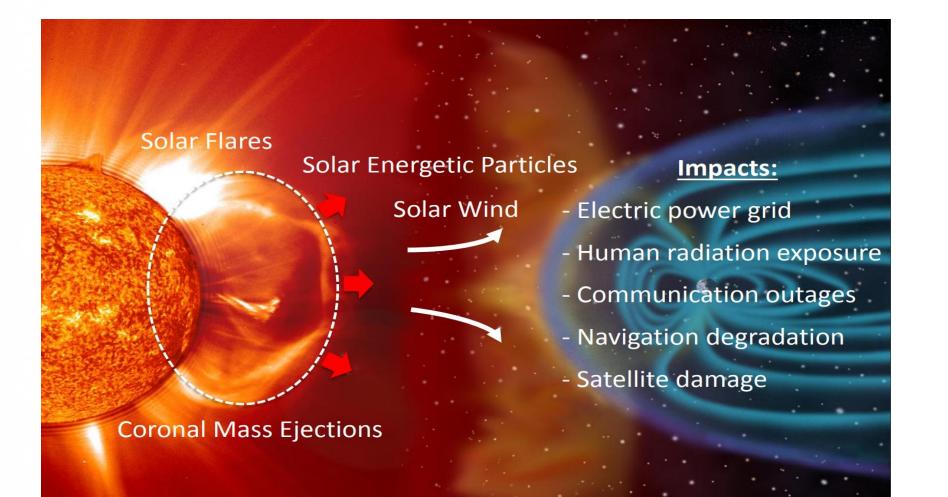
Space Governance

- Much of the existing space governance framework is based on norms
 - Example: Freedom of overflight for satellite reconnaissance
 - Was not codified into "hard law" until Outer Space Treaty of 1967
- Four main treaties: OST, Registration Convention, Liability Convention, Rescue Agreement
- Norms are likely going to be a major mechanism to address future challenges
 - Focus on identifying responsible behavior
 - Non-legally binding approaches becoming popular

Human-Generated Space Objects

- Active satellites as of June 21, 2024:
 - Total: 10,251
 - US: 7186
 - Russia: 281
 - China: 880
 - Japan: 115
 - SpaceX' Starlink: 6098

Orbital Debris


Larger than 10 cm	~20,000	Sources of new debris
Between 1 and 10 cm	~850,000	Can cause major damage
Smaller than 1 cm	Many millions	Can cause minor damage

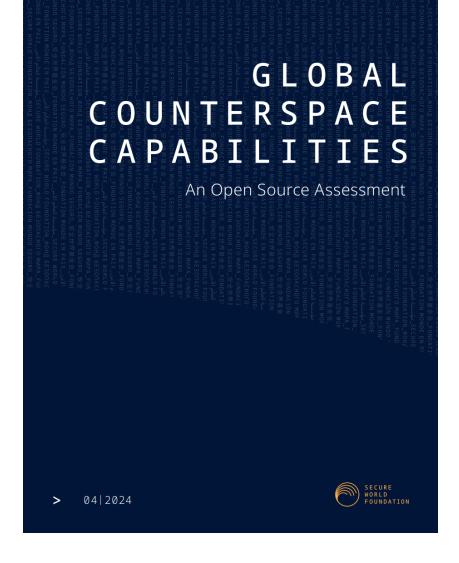
Planned Large Constellations

Constellation	Total Satellites Planned	Altitude	Country	Status
OneWeb Gen1	716	1,200 km	UK	640 launched 620 operational 6 re-entered
OneWeb Gen2	6,372			Planning
Starlink Gen1	4,408	540 – 570 km	US	4,015 launched 3,549 operational 361 re-entered
Starlink Gen2A	7,500	523 – 530 km	US	1,724 launched 1,107 operational 26 re-entered
Starlink Gen2	22,488	328 – 614 km	US	Planning
Kuiper	3,232	590 – 630 km	US	2 launched
Lynk	2,000	450 – 500 km	US	8 launched 4 operational
AST SpaceMobile	243	700 km	Papua New Guinea	1 launched
Lightspeed	1,969	1,015 – 1,325 km	Canada	First launch 2024?
Xingwang	966	880 – 1,110 km	China	15 launched 9 operational
Guanwang (GW)	12,992	590 – 1,145 km	China	Planning
Cinnamon/eSpace	327,320	550 – 638 km	Rwanda	Filed



Space Weather

RF Spectrum Congestion


Congestion on and around the Moon Affecting Cislunar Sustainability

- 106 cislunar and lunar missions by 19 countries and one multilateral organization (ESA)
- Complications on Earth replicating on the Moon?
- Activities on the Moon changing more commercial players
 - Just because an activity can happen, should it?
- Artemis Accords vs International Lunar Research Station?

Efforts to Enhance Space Sustainability

- Multilateral Efforts
 - ESA Zero Debris Charter
 - UN Committee on Peaceful Uses of Outer Space' Long-Term Sustainability Guidelines
 - LTS 2.0 Working Group
- Commercial Sector Initiatives
 - Space Data Association
 - Space Safety Coalition
 - CONFERS
 - Satellite Industry Association
 - Space Sustainability Rating
 - AIAA Satellite Orbital Safety Best Practices

- Existence of counterspace capabilities is not new, but the circumstances surrounding them are
- Significant R&D/testing of a wide range of destructive & nondestructive counterspace capabilities by multiple countries
- Only non-destructive capabilities are actively being used in current military operations

https://swfound.org/counterspace

Counterspace Capabilities

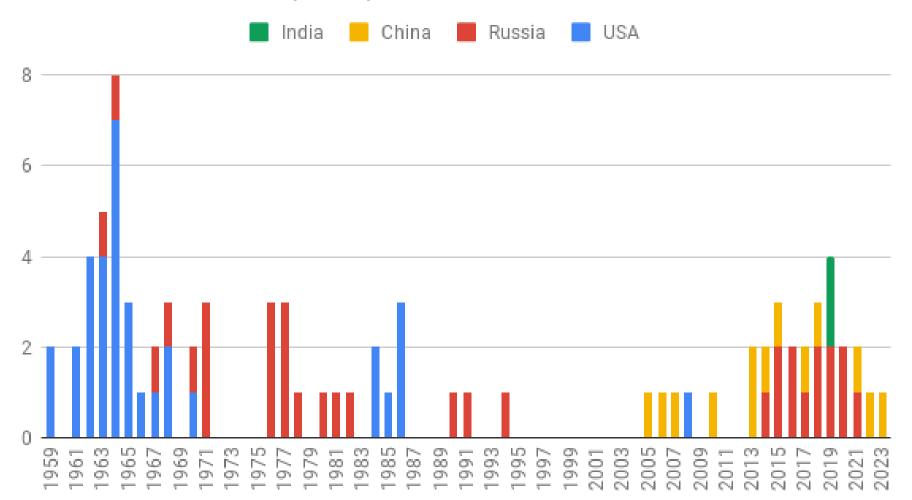
Direct Ascent: weapons that use ground, air-, or sea-launched missiles with interceptors that are used to kinetically destroy satellites through force of impact, but are not placed into orbit themselves;

Co-orbital: weapons that are placed into orbit and then maneuver to approach the target to attack it by various means, including destructive and non-destructive;

Directed Energy: weapons that use focused energy, such as laser, particle, or microwave beams to interfere or destroy space systems;

Electronic Warfare: weapons that use radiofrequency energy to interfere with or jam the communications to or from satellites;

Cyber: weapons that use software and network techniques to compromise, control, interfere, or destroy computer systems.


Space Situational Awareness: knowledge about the space environment and human space activities that enables both offensive and defense counterspace operations

2024 Global Assessment

	US	Russia	China	India	Aus.	France	Iran	Israel	Japan	North Korea	South Korea	UK
LEO Co-Orbital				\bigcirc	\bigcirc	\bigcirc						
MEO/GEO Co-Orbital				\bigcirc	\bigcirc	\bigcirc						
LEO Direct Ascent					\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	
MEO/GEO Direct Ascent				\bigcirc	\bigcirc	\bigcirc		\bigcirc	ightarrow	\bigcirc	ightarrow	
Directed Energy				\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Electronic Warfare											\bigcirc	\bigcirc
Space Situational Awareness												
		Legend	: none	e 🔵 s	ome	significa	ant 🔺					

ASAT Tests by Year (2024)

TABLE 5-1 - ORBITAL DEBRIS CREATED BY ASAT TESTS IN SPACE

DATE	COUNTRY	ASAT SYSTEM	TARGET	INTERCEPT ALTITUDE	TRACKED DEBRIS	DEBRIS STILL ON ORBIT	TOTAL DEBRIS LIFESPAN
Oct. 20, 1968	Russia	IS	Cosmos 248		252	76	50+ years
Oct. 23, 1970	Russia	IS	Cosmos 373		147	35	50+ years
Feb. 25, 1971	Russia	IS	Cosmos 394		118	45	50+ years
Dec. 3, 1971	Russia	IS	Cosmos 459		28	0	3.3 years
Dec. 17, 1976	Russia	IS	Cosmos 880		127	56	45+ years
May 19, 1978	Russia	IS-M	Cosmos 970		71	64	40+ years
Apr. 18, 1980	Russia	IS-M	Cosmos 1171		45	5	40+ years
Jun. 18, 1982	Russia	IS-M	Cosmos 1375		63	59	35+ years
Sept. 13, 1985	U.S.	ASM-135	Solwind	530 km	287	0	18+ years
Sept. 5, 1986	U.S.	Delta 180 PAS	Delta 2 R/B		18	0	< 1 year
Dec. 26, 1994	Russia	Naryad-V?	Unknown		27	24	25+ years
Jan. 11, 2007	China	SC-19	FengYun 1C	880 km	3536	2686	15+ years
Feb. 20, 2008	U.S.	SM-3	USA 193	220 km	175	0	1+ year
Mar. 27, 2019	India	PDV- MK II	Microsat-R	300 km	130	0	3+ years
AugDec. 2019	Russia	Cosmos 2535	Cosmos 2536		30	14	3+ years
Nov. 15, 2021	Russia	Nudol	Cosmos 1408	470 km	1807	67	Unknown

Total 6863 3133

Destructive DA-ASAT Missile Test Moratorium

- April 2022: United States made a commitment not to conduct destructive direct-ascent anti-satellite missile tests, has since been joined by 36 more countries
 - Sept. 2022: "The Government of Japan decided not to conduct destructive, direct-ascent antisatellite (ASAT) missile testing in order to actively promote discussions in the international fora concerning the development of norms of responsible behavior in outer space"
- Driven partially by November 2021 Russian DA-ASAT test
 - DA-ASAT tests have created some of the largest increases in space debris in the last two decades and have made operating in LEO more dangerous for years to come
- UNGA Resolution 77/41 in December 2022 supporting this moratorium (passed 155-9-9)
 - Japan was a co-sponsor
- Becoming prevalent in multilateral discussions about responsible behavior in space
 - Many countries feel it is irresponsible to deliberately create debris on orbit
- DA-ASATs are unlikely to be useful as military weapons

Why a DA-ASAT Missile Test Moratorium Matters

- Destructive ASAT tests create debris that poses a direct threat to future economic activity in space, particularly LEO
 - Raises the costs of operating there and uncertainty for insurers
- Debris is agnostic in terms of whose satellites it threatens: it does not matter if the country who held the test is a geopolitical ally or not
- Debris from Russia's November 2021 ASAT test created "conjunction squalls"
 - Affected remote sensing satellites in sun-synchronous LEO
 - Also many close approaches with Starlink satellites
- Helps build towards international consensus on this and to create a stigma against their use in peacetime
- SWF coordinated an industry statement in support of the DA-ASAT missile test moratorium
 - Currently have 49 signatories from 14 countries
 - For more information, please visit: https://swfound.org/industryasatstatement/

Space Industry Statement in Support of International Commitments Not To Conduct Destructive Anti-Satellite Testing

SIGNATORY COMPANIES

Join us at the 6th SUMMIT for SPACE SUSTAINABILITY July 11-12, 2024

oun

LOCATION: TOKYO, JAPAN at The National Museum of Emerging Science and Innovation (Miraikan)

SPACETIDE Held in coordination with the APAC's leading commercial space conference, SPACETIDE 2024, which will take place in Tokyo from July 8-10, 2024.

More information & to register visit SWFsummit.org

#SWFsummit24

Thanks.

Victoria Samson, vsamson@swfound.org

@SWFoundation

