Space Security and Challenges to International Stability

Victoria Samson, Secure World Foundation Presentation for the Titan Brain Trust of the Space Economy Evolution (SEE) Lab, SDA Bocconi School of Management Oct. 3, 2023

Secure World Foundation (SWF) is a *private operating foundation* that promotes cooperative solutions for space sustainability

Our vision: The secure, sustainable, and peaceful uses of outer space that contribute to global stability on Earth

Our mission: Secure World Foundation works with governments, industry, international organizations, and civil society to develop and promote ideas and actions to achieve the secure, sustainable, and peaceful uses of outer space benefiting Earth and all its peoples

- Existence of counterspace capabilities is not new, but the circumstances surrounding them are
- Significant R&D/testing of a wide range of destructive & non-destructive counterspace capabilities by multiple countries
- Only non-destructive capabilities are actively being used in current military operations

https://swfound.org/counterspace

Counterspace Capabilities

Direct Ascent: weapons that use ground, air-, or sea-launched missiles with interceptors that are used to kinetically destroy satellites through force of impact, but are not placed into orbit themselves;

Co-orbital: weapons that are placed into orbit and then maneuver to approach the target to attack it by various means, including destructive and non-destructive;

Directed Energy: weapons that use focused energy, such as laser, particle, or microwave beams to interfere or destroy space systems;

Electronic Warfare: weapons that use radiofrequency energy to interfere with or jam the communications to or from satellites;

Cyber: weapons that use software and network techniques to compromise, control, interfere, or destroy computer systems.

Space Situational Awareness: knowledge about the space environment and human space activities that enables both offensive and defense counterspace operations

2023 Global Assessment

	U.S.	Russia	China	India	Aus.	France	Iran	Japan	North Korea	South Korea	U.K.
LEO Co-Orbital											
MEO/GEO Co-Orbital											
LEO Direct Ascent											
MEO/GEO Direct Ascent											
Directed Energy											
Electronic Warfare											
Space Situational Awareness											
		Legend	: none	e 🔵 s	ome	signific	ant 🔺				

NIAS-CISAC Dialogue September 2023

TABLE 5-1 - ORBITAL DEBRIS CREATED BY ASAT TESTS IN SPACE

DATE	COUNTRY	ASAT SYSTEM	TARGET	INTERCEPT ALTITUDE	TRACKED DEBRIS	DEBRIS STILL ON ORBIT	TOTAL DEBRIS LIFESPAN
Oct. 20, 1968	Russia	IS	Cosmos 248		252	79	50+ years
Oct. 23, 1970	Russia	IS	Cosmos 373		147	35	50+ years
Feb. 25, 1971	Russia	IS	Cosmos 394		118	45	50+ years
Dec. 3, 1971	Russia	IS	Cosmos 459		29	0	3.3 years
Dec. 17, 1976	Russia	IS	Cosmos 880		127	57	45+ years
May 19, 1978	Russia	IS-M	Cosmos 970		73	64	40+ years
Apr. 18, 1980	Russia	IS-M	Cosmos 1171		48	6	40+ years
Jun. 18, 1982	Russia	IS-M	Cosmos 1375		64	60	35+ years
Sept. 13, 1985	U.S.	ASM-135	Solwind	530 km	2 87	0	18+ years
Sept. 5, 1986	U.S.	Delta 180 PAS	Delta 2 R/B		17	0	< 1 year
Dec. 26, 1994	Russia	Naryad-V?	Unknown		27	24	25+ years
Jan. 11, 2007	China	SC-19	FengYun 1C	880 km	3536	2 78 6	15+ years
Feb. 20, 2008	U.S.	SM-3	USA 193	22 0 km	175	0	1+ year
Mar. 27, 2019	India	PDV- MK II	Microsat-R	300 km	130	1	3+ years
AugDec. 2019	Russia	Cosmos 2535	Cosmos 2536		30	16	3+ years
Nov. 15, 2021	Russia	Nudol	Cosmos 1408	470 km	1790	300	Unknown

1

Close Approaches and Effects on Space Stability

- Uncoordinated close approaches: potential for (inadvertent) escalation
- Not as easy to make hard and fast requirements about
- Different risk assessments by different actors in space
- Very few hard "rules" about what is and isn't allowed
 - Intent is key how do you demonstrate intent?
 - Need for rules of the road: right of way, ways to quickly communicate amongst actors, IncSea for space?
 - Role of space situational awareness and its limitations

State of Multilateral Security Discussions (1)

- No forward movement on space security and stability discussions at the UN for decades
 - Disagreement on nature of the threat and how to respond
 - Treaty on the Prevention of the Placement of Weapons in Outer Space, the Threat or Use of Force Against Outer Space Objects (PPWT) / No First Placement (NFP) versus nothing
 - EU Draft Code of Conduct
 - 2013 Group of Governmental Experts (GGE) on TCBMs
 - 2019 GGE on prevention of an arms race in outer space (PAROS)
- UNGA 75/36: Dec. 2020
 - National submissions to the UNSG on nature of the threat to space, responsible/irresponsible behavior, and possible paths forward
 - See some commonalities emerge: act with due regard, avoid harmful interference, no non-consensual close approaches, no deliberate creation of long-lived debris
- UNGA 76/231: Dec. 2021
 - Created an Open-Ended Working Group to meet four times over 2022 and 2023
 - Goal: come up with recommendations on possible norms, rules, and principles of responsible behaviors relating to threats by States to space systems

State of Multilateral Security Discussions (2)

- Open-ended Working Group (OEWG) on Reducing Space Threats through Norms, Rules, and Principles of Responsible Behaviours
 - Met four times from May 2022 to August 2023
 - 70 countries participated plus civil society
- UNGA 77/41: Dec. 2022
 - Calls upon nations to make the commitment not to conduct destructive DA-ASAT missile tests
 - 155-9-9
- UNGA 77/42: Dec. 2022
 - Calls for no first placement of weapons in outer space
 - 123-50-3
- UNGA 77/250: Dec. 2022
 - Calls for a GGE to to consider and make recommendations on substantial elements of an international legally binding instrument on PAROS (including the prevention of placement of weapons in outer space); 115-47-7
 - Will meet for two weeks November 2023 and July 2024

Responsible behavior in space

- Just wrapped up two-year process of UN Open-ended Working Group on Reducing Space Threats
 - Success? Yes and no
- Interest converging on many issue areas, including avoiding deliberate creation of debris, need for rules on actions (notifications, consultations) prior to conducting rendezvous and proximity operations, value of TCBMs
- Jessica West (Ploughshares) analysis of types of recommendations for responsible behavior: operating with due regard, sharing information, avoid contamination of space environment, avoid harmful interference, non-use of force

Case Study: ASAT Test Moratorium

- Dangerous nature of space debris to satellites, humans in orbit
 - ~8900 active satellites; ~48,000 pieces of debris we can track, ~900,000 pieces big enough to cause damage but too small to track
 - ASAT tests leave debris in orbit
 - At present, no way to deliberately get rid of debris (remediation)
- International support growing for an ASAT test moratorium
 - Increasingly see the deliberate creation of debris/holding destructive ASAT tests as irresponsible behavior
 - In April 2022, the United States announced it was making a commitment not to conduct destructive direct-ascent anti-satellite missile tests
 - 35 countries now have made this commitment
 - UNGA Resolution 77/41 called for same commitment
 - Underlines focus on behavior, not necessarily technologies
 - Aided by dwindling military utility of DA-ASAT tests

Tools for Improving Communication, Transparency

- Lexicon for Outer Space Security (https://unidir.org/publication/lexicon-outer-space-security)
 - Intended to facilitate shared understandings of key topics and terms
 - Three types of terms:
 - Acronyms
 - Common definitions
 - Terminology frequently used in space security discussions that could benefit from further clarification
- **Space Security Portal** (https://spacesecurityportal.org/)
 - Interactive map of global space governance landscape
 - Seeks to support informed participation by interested stakeholders and support transparency, information-sharing, and capacity-building

Congestion On and Around the Moon

- 106 cislunar and lunar missions by 19 countries and one multilateral organization (ESA)
- Activities on the Moon are changing
- Artemis Accords vs International Lunar Research Station?
- Complications on Earth replicating on the Moon?

Thanks.

Victoria Samson, vsamson@swfound.org

@SWFoundation

