Small Satellites - Opportunities & Challenges for New Actors in Space

Ian Christensen

Project Manager, Secure World Foundation

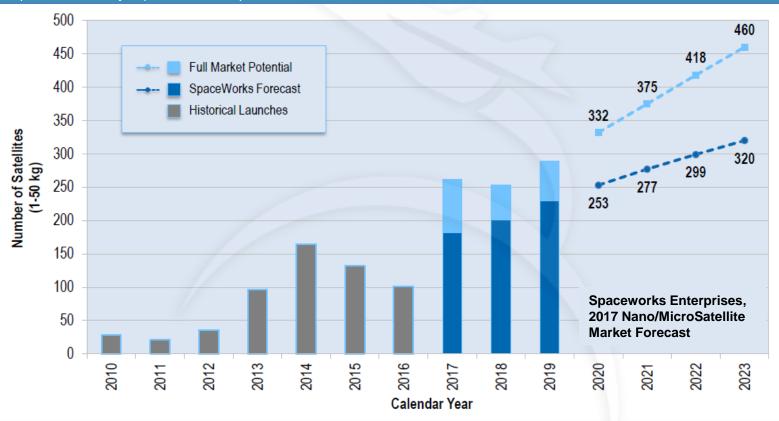
Small Satellites Tech, Business & Regulatory Industry Workshop

ESA ESTEC April 13, 2017

©2017 Secure World Foundation. Used with Permission

- Secure World Foundation is a private operating foundation that promotes cooperative solutions for space sustainability
- Why space sustainability? Increasing reliance on space assets coupled with potentially destabilizing trends
- Our mission: SWF works with governments, industry, international organizations and civil society to develop and promote ideas and actions for international collaboration that achieve the secure, sustainable, and peaceful uses of outer space for the socioeconomic and environmental benefits to Earth

DISRUPTION

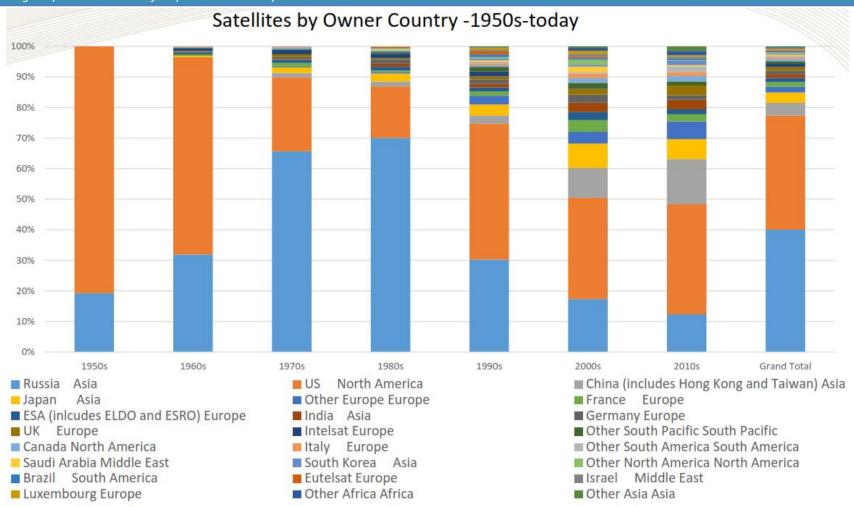

<u>Disruptive Innovation:</u> "a process by which a product or service takes root initially in simple applications at the bottom of a market and then relentlessly moves up market, eventually displacing established competitors" (Clayton Christensen)

http://www.claytonchristensen.com/key-concepts/

A fundamental change?

Promoting Cooperative Solutions for Space Sustainability

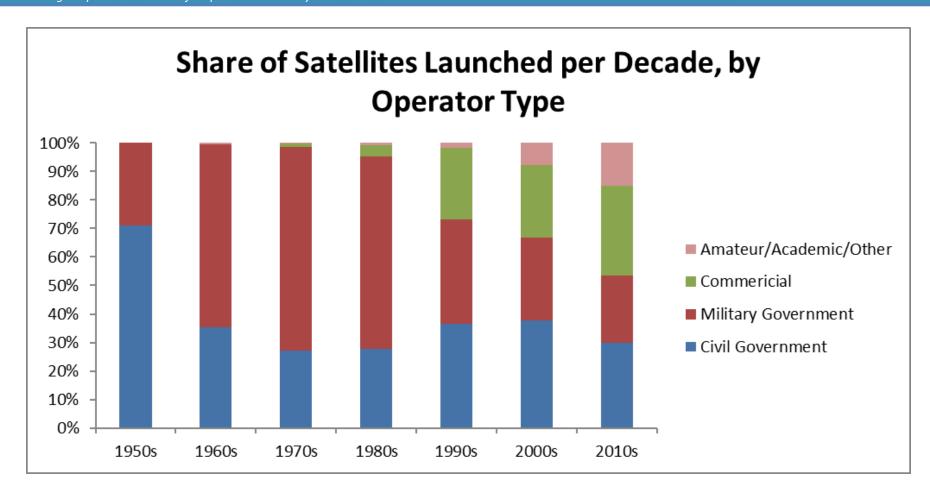
As of June 2016: Total number of operating satellites: 1,419


Forecast: Up to 2400 micro/nanosatellites to launch by 2023

Mega-constellations: 16,000+ planned satellites, many not included in above

Space is becoming more international

Promoting Cooperative Solutions for Space Sustainability



Adapted from IDA Global Trends in Civil and Commercial Space Study

Space is becoming more commercial

Promoting Cooperative Solutions for Space Sustainability

Source: McDowell, Jonathan C, 2017—Satellite Statistics http://www.planet4589.org/space/log/stats2/own_categ.txt

SECURE WORLD FOUNDATION Promoting Cooperative Solutions for Space Sustainability

Disruptive Business Approaches

"Change is hitting the industry from all sides, and it's not just technology that's advancing, although in many ways it is leading the upheaval. There's also a transformation in manufacturing systems, business models, customer engagement, and management processes."

- Avascent (Space Market Disruption Whitepaper, 2015)

Planet founders pose with a flock of Doves.

Image credit: SatMagazine

* Satellites not to scale

Small satellites as a disruptor

Opportunities

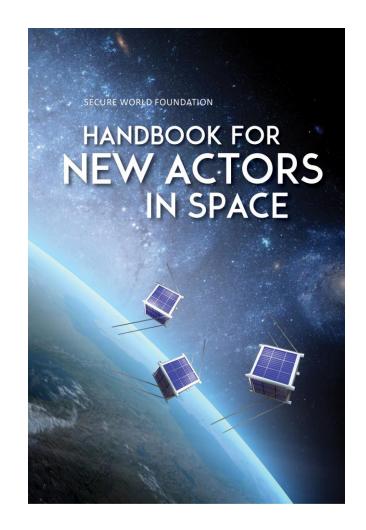
- Lower costs of access to space technology
- Lower technical and scientific barriers
- Broaden and diversify actors and users
- Enable new (and innovative?)
 applications and services
- Provide increased societal benefit

Challenges

- Regulatory fit, efficiency, and scale
- Diverse, heterogeneous set of actors
- Few standards for operations
- Spectrum, SSA, and potential space debris implications

SWF HANDBOOK

SECURE WORLD FOUNDATION


SWF Handbook for New Actors in Space

Promoting Cooperative Solutions for Space Sustainability

 Goal: Create a publication that provides an overview fundamental principles, laws, norms, and best practices for safe, predictable, and responsible activities in space

Two specific audiences:

- Countries developing space programs and/or having to oversee and regulate their first satellites
- Universities and start-up companies that are developing/operating satellites

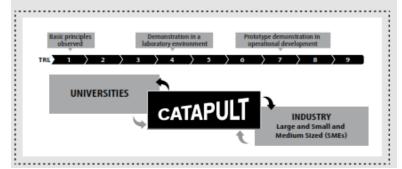
Chapter 1 – International framework

Promoting Cooperative Solutions for Space Sustainability

- Freedom and Responsibility
- Registration of Space Objects
- International Frequency Management
- Remote Sensing
- International Standards
- International Export Control
- International Liability
- Dispute Settlement
- Environmental Issues
- Advanced Issues
- International Organizations

Part A: Information provided in conformity with the Registration Convention or General Assembly Resolution 1721 B (XVI)							
New registration of space object	Yes 🗆	Check Box					
Additional information for previously registered space object	Submitted under the Convention: ST/SG/SER.E/ Submitted under resolution 1721B: A/AC.105/INF.	UN document number in which previous registration data was distributed to Member States					
Launching State/States/international intergovernmental organization							
State of registry or international intergovernmental organization Other launching States		Under the Registration Convention, only one State of registry can exist for a space object.					
Designator							
Name COSPAR international designator							
National designator/registration number as used by State of registry							
Date and territory or location of launch							
Date of launch (hours, minutes, seconds optional) Territory or location of launch	hrs min dd/mm/yyyy sec	Coordinated Universal Time (UTC)					
Basic orbital parameters							
Nodal period Inclination Apogee Perigee		minutes degrees kilometres kilometres					

UNOOSA International Registry Form


Chapter 2 – National policy and administration

- Public Policy
 - Rationales, objectives, principles
 - Government roles and responsibilities
- Public Administration and National Oversight
 - National regulators and licensing
 - National frequency administration
 - Export controls
- Case Study: Remote Sensing Policy and Administration

Case Study:

The United Kingdom Satellite Applications Catapult

The United Kingdom Satellite Applications Catapult was established by the government of the United Kingdom (UK) in May 2013 with the goal of creating economic growth in the UK through supporting the development, commercialization, and use of satellite applications. According to its Delivery Plan 2015-2020, the Catapult (Figure 8) aims to promote satellite application and technology development and to help domestic industry "bring new products and services more rapidly to market." The Satellite Applications Catapult is one of 11 "Catapults" operating in the UK, each focusing on different technologies and application areas. The Catapult operates as a private, not-for-profit research organization. It is governed by a board, which includes representation from the United Kingdom Space Agency (UKSA) and from Innovate UK-a government agency focused on fostering technology and economic development.

UK Satellite Applications
Catapult

Chapter 3 – Responsible space operations

Promoting Cooperative Solutions for Space Sustainability

- Pre-launch
 - Licensing
 - Launch vehicle selection and integration
 - Insurance
- Launch
 - Safety considerations
- On-orbit
 - Orbit determination,
 propagation, and tracking
 - Conjunction assessment and collision avoidance
 - Anomaly response
- End-of-life

Examples of CA Screening Volumes							
Orbit Regime	Orbit Regime Criteria/Definition	Predict/ Propagate/ Time	Radial Miss (km)	In- Track Miss (km)	Cross- Track Miss (km)		
GEO	1300min < Period < 1800 min Eccentricity < 0.25 & Inclination < 35°	10 days	12	364	30		
HEO 1	Perigee < 2000 km & Eccentricity > 0.25	10 days	40	77	107		
MEO	600 min < Period < 800 min Eccentricity < 0.25	10 days	2.2	17	21		
LEO 4	1200 km < Perigee ≤ 2000 km Eccentricity < 0.25	7 days	0.5	2	2		
LEO 3	750 km < Perigee ≤ 1200 km Eccentricity < 0.25	7 days	0.5	12	10		
LEO 2	500 km < Perigee ≤ 750 km Eccentricity < 0.25	7 days	0.5	28	29		
LEO 1	Perigee ≤ 500 km Eccentricity < 0.25	7 days	2	44	51		

Examples of close approach screening volumes

- The Handbook was officially released in February 2017
- Electronic copies are available through the SWF website, free of charge: www.swfound.org/handbook
- Printed copies are also available
- SWF plans to curate an electronic library of resources to accompany the Handbook
 - Looking for interested partners to help with sponsorship or contributions
 - Companies
 - Governments
 - NGOs
 - Universities

Thank You

ichristensen@swfound.org

©2017 Secure World Foundation. Used with Permission