Status of Active Debris Removal (ADR) developments at the Swiss Space Center

Prof. Volker Gass

On-Orbit Satellite Servicing and active Debris Removal
February 19-20, 2013
Sheraton Towers, Singapore
ADR mission architecture studies

• Questions:
 - What is the best architecture (= cheapest?) to remove 5-10 large debris per year?
 - What is the best way to get organised internationally? (not yet answered)

• Considering population of “500 most wanted debris” [R1]:
 - Mostly large rocket bodies
 - 1000 – 8000 kg
 - Mostly 71°, 81°, 83° and SSO inclinations

ADR mission architecture studies

- In collaboration with MIT (USA, Prof. O. De Weck), we have developed a mission architecture tool that:
 - Considers various mission architectures
ADR mission architecture studies

• In collaboration with MIT (USA, Prof. O. De Weck), we have developed a mission architecture tool that:
 - Considers various mission architectures
 - Selects which target debris, optimizes order of removal to minimize propulsion needs and mission duration
ADR mission architecture studies

- In collaboration with MIT (USA, Prof. O. De Weck), we have developed a mission architecture tool that:
 - Considers various mission architectures
 - Selects which target debris, optimizes order of removal to minimize propulsion needs and mission duration
 - Finds the launch date that maximises number of debris removed per launch
ADR mission architecture studies

• In collaboration with MIT (USA, Prof. O. De Weck), we have developed a mission architecture tool that:
 - Considers various mission architectures
 - Selects which target debris, optimizes order of removal to minimize propulsion needs and mission duration
 - Finds the launch date that maximises number of debris removed per launch
 - Provides a parametric design the “remover satellite or kit”, compares various technologies
ADR mission architecture studies

- In collaboration with MIT (USA, Prof. O. De Weck), we have developed a mission architecture tool that:
 - Considers various mission architectures
 - Selects which target debris, optimizes order of removal to minimize propulsion needs and mission duration
 - Finds the launch date that maximises number of debris removed per launch
 - Provides a parametric design the “remover satellite or kit”, compares various technologies
 - Provides a parametric mission and debris removal campaign cost

First results to be published during 6th European Conference on Space Debris, 22-25 April 2013, Darmstadt, Germany
ADR demonstration opportunity

• Participated in EC FP7 Call SPA.2013.2.3-02: “Security of space assets from in-orbit collisions”

• This call asks for a demonstration mission, which purpose is to perform an in-orbit removal of debris in a low-cost manner

• Consortium coordinator: GMV (Spain)
 - Partners: Univ. Bologna, ALMASpace, Thales Alenia Space, EPFL, TSD, Univ. Roma La Sapienza, Poli Milano, ONERA, D-Orbit, DTM

• Will test and validate:
 - Guidance, Navigation & Control, before and after capture
 - Vision based approach system
 - Multi-capture demos, inc. Robotic and/or Net capture
 - Mission operations concept, autonomy level
Optical detection of debris

• In collaboration with Uni-Bern Astronomical Institute (Prof. T. Schildknecht), preparing an optical characterisation of SwissCube CubeSat

• AIUB has a long experience in the field of debris observation (mainly in high-altitude orbits, GEO/GTO/MEO)
 - Based on optical observations with the telescopes at the Zimmerwald observatory and in Teneriffe, AIUB developed high precision propagators to predict the position of debris objects, including high area-to-mass ratio objects
 - Has a permanently updated debris catalogue and algorithms to identify and extract debris objects from telescope images
 - AIUB is also trying to identify shape, size and rotation states using light curve analysis.
Optical detection of debris

• In collaboration with Uni-Bern Astronomical Institute (Prof. T. Schildknecht), preparing an optical characterisation of SwissCube CubeSat

• Future developments:
 - More advanced propagators, identification of debris shapes, rotation rates and spin axis orientation using light curve analysis and direct imaging
 - Improved and automated observation technologies
 - Debris detection and tracking using the Zimmerwald Satellite Laser Ranging (SLR) station

• Interests of AIUB:
 - Verify AIUB’s orbital determination/observations with on board-measurements
 - Verify light curve spectra
 - Verify on-board observation/tracking techniques (algorithms)
 - Have onboard telescope images on ground for comparison.
CleanSpace One Project

• After the launch of SwissCube CubeSat (Sept. 2009), started ADR technology program called “Clean-mE”

• Research and development most efficient when targeted to a concrete application
 => Start of CleanSpace One project

• The objectives of the CleanSpace One project are to:
 - Increase awareness, responsibility in regard to orbital debris and educate aerospace students
 - Demonstrate technologies related to Orbital Debris Removal
 - De-orbit SwissCube.
CleanSpace One NanoSat

- **CleanSpace One nanosat:**
 - Based on a CubeSat platform as preliminary assumption
 - Preliminary (Phase 0) design done using CDF
 - Launch ~ 2017

- Critical technologies provided by partner institutions (open to international cooperation). Satellite platform designed by students.

- Operations performed by students in partnership with professional institutions

CleanSpace One conceptual design
Vision based systems – current work

- With EPFL Prof. J-P. Thiran’s laboratory, research developments for one 2-D camera and optical flow
 - Motion reconstruction algorithms
 - Algorithms developed, first iteration
 - Current process: creation of representative images, characterisation of algorithm performances

- Hardware implementation
 - Cameras: have discussions with Space-X and with PhotonFocus
 - Evaluation of various CubeSat based computers
Capture mechanisms – current work

• Three designs in parallel:

1. Underactuated mechanisms
 - Work under/in cooperation with Prof. Lauria, HES-Geneva

2. Dielectric polymer actuators
 - Work under/in cooperation with Prof. H. Shea

3. Compliant mechanisms
 - Work in cooperation with F. Campanile, EMPA
Conclusions

• The Swiss Space Center is pursuing mission architecture studies and development of technologies needed for Orbital Debris Removal

• Participation in mission oriented proposals
 - CleanSpace One project in fund raising phase, student team started in September 2012
 - EC FP7 ADR
 - Nanosat demonstrators have three major advantages:
 ▪ Tests and demonstrates key elements for orbital debris removal, focuses the development on something real
 ▪ Relatively cheap demonstration mission, proposes low-cost mission options
 ▪ Continues education in a very motivating field

• Our goal is to help community, fill in technology gaps, and propose low-cost solutions that integrates within international developments