

INVESTIGATION OF SPACE DEBRIS REMOVAL USING TETHER DEORBIT METHOD

Sun Liang, Chen Shenyan SCHOOL OF ASTRONAUTICS, BEIHANG UNIVERSITY

ACTIVE DEBRIS REMOVAL TECHNIQUES

COMPARISON OF TETHER DEORBIT METHODS

CHANLLENGES IN TETHER DEORBIT METHODS

Distribution of space debris (LEO region)

Distribution of space debris (Global view)

Categories of LEO Debris

Physical Size	Comments	Potential Risk to Satellites
> 10 cm	Can be tracked No effective shielding	Complete destruction
1-10 cm	Larger objects in this range may be tracked No effective shielding	Severe damage or complete destruction
< 1cm	Cannot be tracked Effective shielding exists	Damage

Graphic evolution of total trackable LEO object population since 1994

Debris Events

Name	Year	Altitude	Cataloged Debris	Cause
Cosmos 2251	2009	790 km	1267	Accidental collision
Iridium 33	2009	790 km	521	Accidental collision
Cosmos 2421	2008	410 km	509	Unknown

Collision of Iridium33 & Cosmos2251

A commercial communications satellite (IRIDIUM 33) and a defunct Russian satellite (COSMOS 2251) impacted each other on February 9th, 2009 above Northern Siberia, creating a cloud of debris.

ACTIVE DEBRIS REMOVAL TECHNIQUES

	Si	ze < 1cm	Size 1-10cm	Size > 10cm	
	metal	other		cooperating	tumbling
Orbit LEO	Magnetic Field gen. Retarding su Sweeping su Space based Foams Thruster ex	urface urface d Laser haust	Ground/Air/Spac e based Laser Foams Thruster exhaust	Ret. Surf. Tethers Magnetic sail Prop. Module Tentacles	Net Tentacles
Orbit GEO		Foams Thruster exhaust [trackability is difficult]		Capture Vehicle Momentum Tether Solar sail	Net Tentacles

Source: J. Olympio, presentation at CNES Orbital Debris Removal Workshop, Paris, 22 June, 2010

ACTIVE DEBRIS REMOVAL TECHNIQUES

Briefly discuss

Solar sail

An option for disposal of objects in high orbits

- No propellant storage or engines required
- Hard for deployment and control

Source: http://en.wikipedia.org/wiki/Solar_sail

Drag augmentation device

Effect of atmospheric drag on satellite increased
Effective area increased without increasing mass

Orbital lifetime reduced from years to weeks

ACTIVE DEBRIS REMOVAL TECHNIQUES

Laser

- ◆A feasible way to remove 1~10cm debris from LEO
- Burning: make use of laser beam to heat debris and make it sublimated
- Promoting: irradiate debris and blow off a plasma

Source: Phipps et al., J. Propulsion, 26:4(2010)

Electrodynamic tether

- ◆ A good way to de-orbit the LEO debris
- Based on the exploitation of the Lorenz force

Tether drag deorbit

- ◆ To approach and capture an abandoned satellite in GEO region
- ◆ To tow it into a graveyard orbit

Projects

Electrodynamic tether:

- 1. TSS-1\ TSS-1R (ASI&NASA) (Tethered satellite system)
- 2. GRASP (TUI) (Grapple, Retrieve, & Secure Payload)
- 3. SDMR (JAXA) (Space Debris Micro Remover)

Projects

Tether drag deorbit:

- 1. ROGER (Robotic Geostationary Orbit Restorer)
- 2. Space tug missions

Attainable range

Electrodynamic tether: LEO Tether drag deorbit: LEO/GEO

Time consuming

Terminator Tether: 7.5km tether, 1% of the host spacecraft's mass

Inclination (deg)	Orbital altitude (km)	Deorbit time (day)
0	400	10
0	900	55
0	1400	170
25	1400	220
50	1400	325
75	1400	poor effective

Projects costs

Electrodynamic tether:

\$ 100,000 per flight unit (Terminator Tape)

Tether drag deorbit:

- \$20 million per grave yard mission
 \$2 million per inspection (ROGER)
- 2. \$20.48 million for satellite deorbiting& \$15 million for each piece (Space tug mission)

Reliability

Electrodynamic tether:

- 1. The possibility of tether breaking by debris is augmented
- 2. Tether material makes a great influence on reliability

Tether drag deorbit:

- 1. The magnitude of tether tension might lead to the tether breaking
- 2. The phenomena of tether twining may occur

CHANLLENGES IN TETHER DEORBIT METHODS

- Solution of many technical challenges
- Political, legal, economic and cultural
- International cooperation

