

DESIGN AND EVALUATION OF AN ACTIVE SPACE DEBRIS REMOVAL MISSION USING CHEMICAL PROPULSION AND ELECTRODYNAMIC TETHERS

IN SUPPORT OF THE UNITED NATIONS PROGRAMME ON SPACE APPLICATIONS

Matteo Emanuelli S. Ali Nasseri CJ Nwosa **Siddharth Raval** Andrea Turconi

SGAC Space Safety and Sustainability Working Group

CONTENT

- Introduction
- Target Debris
- Mission Phases
 - Launch Vehicle and Launch Site determination
 - Mission Simulation in STK and Orbital Maneuvers
 - Electrodynamic Tether
 - Chemical Propulsion Analysis
- Conclusions and Future Work

ACE GENERATION IN SUPPORT OF THE UNITED NATIONS PROGRAMME ON SPACE APPLICATIONS

Introduction

- Space Debris: Critical Level LEO
- Kessler Effect
- Idea: Integrate de-orbiting system with an upper stage
- Each upper stage will de-orbit itself and space debris
- We can use upper stage subsystems during the mission, reducing mission costs.

ENERATION IN SUPPORT OF THE UNITED NATIONS PROGRAMME ON SPACE APPLICATIONS

Target Debris Identification

Target Debris

- Kosmos 3M
- Soyuz
- Tsyklon-3
- Zenit
- Dnepr
- Thor Burner 2A
- Scout
- Other

- Low earth orbit.
- Selected body: Kosmos 3M

Target Debris Identification

Mean Motion (deg/s)	0.0573292
Eccentricity	0.002639
Inclination (deg)	82.976
Argument of Perigee (deg)	151.655
RAAN (deg)	233.421
Mean Anomaly (deg)	208.605

Launch Vehicle and Launch Site

- Analyzed all launch vehicles with
 - Upper stage restartability
 - Large payload mass for SSO
 - High propellant capacity
- Chosen Launch Vehicles:
 - Soyuz 2 with Fregat upper stage
 - Proton-M with Breeze-M upper stage
- Chosen Launch site:
 - Plesetsk (Russian Federation 62°57'35"N, 40°41'2"E)

11/14/2012

Loungh to Pade

Launch

Mission Simulation in STK

Launch to Park Orbit-Launch VehicleTo ApogeeAltitude increase0.105UpperstageCombined ChangeHohman transfer0.056UpperstageInclination change 1 (83 to 74 deg)1.71UpperstageInclination change 1 (83 to 74 deg)1.71UpperstagePropagate 1Inclination change 2 (74 to 66 deg)1.101UpperstagePropagate 2Inclination change 3 (66 to 53 deg)1.809UpperstagePropagate 3Inclination change 4 (53 to 43 deg)1.402UpperstagePropagate 3Inclination change 5 (43 to 29 deg)1.576UpperstagePropagate 4Inclination change 6 (29 to 18 deg)2.808UpperstagePropagate 5Altitude Decrease (900 to 500 km)DependsEDTPropagate 5	Maneuver	Velocity Increment (km/s)	Provided by	Coast to Apoapsis
Altitude increase0.105UpperstageHohman transfer0.056UpperstageCombined change0.849UpperstageInclination change 1 (83 to 74 deg)1.71UpperstageInclination change 2 (74 to 66 deg)1.101UpperstageInclination change 3 (66 to 53 deg)1.809UpperstageInclination change 4 (53 to 43 deg)1.402UpperstageInclination change 5 (43 to 29 deg)1.576UpperstageInclination change 6 (29 to 18 deg)2.808UpperstageAltitude Decrease (900 to 500 km)DependsEDT	Launch to Park Orbit	-	Launch Vehicle	Combined Change
Hohman transfer0.056UpperstageCombined change0.849UpperstageInclination change 1 (83 to 74 deg)1.71UpperstageInclination change 2 (74 to 66 deg)1.101UpperstageInclination change 3 (66 to 53 deg)1.809UpperstageInclination change 4 (53 to 43 deg)1.402UpperstageInclination change 5 (43 to 29 deg)1.576UpperstageInclination change 6 (29 to 18 deg)2.808UpperstageAltitude Decrease (900 to 500 km)DependsEDT	Altitude increase	0.105	Upperstage	Propagate
Combined change0.849UpperstageInclination change 1 (83 to 74 deg)1.71UpperstageInclination change 2 (74 to 66 deg)1.101UpperstageInclination change 3 (66 to 53 deg)1.809UpperstageInclination change 4 (53 to 43 deg)1.402UpperstageInclination change 5 (43 to 29 deg)1.576UpperstageInclination change 6 (29 to 18 deg)2.808UpperstageAltitude Decrease (900 to 500 km)DependsEDT	Hohman transfer	0.056	Upperstage	🕀 🧿 Inclination change for E
Inclination change 1 (83 to 74 deg)1.71UpperstageInclination change 6 (29 to 18 deg)1.101UpperstageInclination change 4 (53 to 43 deg)1.809UpperstagePropagate3Inclination change 5 (43 to 29 deg)1.576UpperstagePropagate4Inclination change 6 (29 to 18 deg)2.808UpperstagePropagate4Altitude Decrease (900 to 500 km)DependsEDTPropagate5	Combined change	0.849	Upperstage	Propagate1
Inclination change 2 (74 to 66 deg)1.101UpperstageInclination change 3 (66 to 53 deg)1.809UpperstageInclination change 4 (53 to 43 deg)1.402UpperstageInclination change 5 (43 to 29 deg)1.576UpperstageInclination change 6 (29 to 18 deg)2.808UpperstageAltitude Decrease (900 to 500 km)DependsEDT	Inclination change 1 (83 to 74 deg)	1.71	Upperstage	Inclination change for E
Inclination change 3 (66 to 53 deg)1.809UpperstageInclination change 4 (53 to 43 deg)1.402UpperstageInclination change 5 (43 to 29 deg)1.576UpperstageInclination change 6 (29 to 18 deg)2.808UpperstageAltitude Decrease (900 to 500 km)DependsEDT	Inclination change 2 (74 to 66 deg)	1.101	Upperstage	Propagate2
Inclination change 4 (53 to 43 deg)1.402UpperstageInclination change 5 (43 to 29 deg)1.576UpperstageInclination change 6 (29 to 18 deg)2.808UpperstageAltitude Decrease (900 to 500 km)DependsEDT	Inclination change 3 (66 to 53 deg)	1.809	Upperstage	Propagate3
Inclination change 5 (43 to 29 deg)1.576UpperstageInclination change 6 (29 to 18 deg)2.808UpperstageAltitude Decrease (900 to 500 km)DependsEDT	Inclination change 4 (53 to 43 deg)	1.402	Upperstage	Inclination change for E
Inclination change 6 (29 to 18 deg)2.808UpperstageAltitude Decrease (900 to 500 km)DependsEDTEDTInclination change for E	Inclination change 5 (43 to 29 deg)	1.576	Upperstage	Propagate4
Altitude Decrease (900 to 500 km) Depends EDT	Inclination change 6 (29 to 18 deg)	2.808	Upperstage	Inclination change for E
C Deserved C	Altitude Decrease (900 to 500 km)	Depends	EDT	Propagate5

EDT Model

 $T(mN) = 0.0077 * i^{3} - 0.8542 * i^{2} - 21.315 * i + 3391.5 (i < 90^{\circ})$ $T(mN) = -0.0001 * i^{4} + 0.0604 * i^{3} - 9.5709 * i^{2} + 646 * i - 15987 (i > 90^{\circ})$

Mass and Altitude Properties

	Soyuz upper stage (Fregat)	Proton upper stage (Breeze-M)	
Primary payload mass (ton)	1-3	4-5	
Vacuum specific impulse (s)	327	325.5	
Propellant mass (ton)	5.35	19.8	
Structural mass (ton)	1	2.37	
EDT mass (kg)	80		
Debris altitude (km)	900		
Debris inclination (deg)	83		
Kosmos 3M mass (kg)	1435		
Target orbit (km)	500		

Results: Propellant use

which EDT is turned on for the Soyuz

upper stage

(b) Propellant used versus inclination at which EDT is turned on for the Proton upper stage

GENERATION BY COUNCIL IN SUPPORT OF THE UNITED NATIONS PROGRAMME ON SPACE APPLICATIONS

Results: Residual Propellant

(c) Residual propellant versus inclination at which EDT is turned on for the Soyuz upper stage (d) Residual propellant versus inclination at which EDT is turned on for the Proton upper stage

Results: De-orbiting Time

Conclusions

- Modified Soyuz or Proton upper stage equipped with a tether system, can deliver a primary payload to a 900 km polar orbit and connect to a Kosmos 3M 2nd stage to de-orbit it.
- It is clear that a hybrid solution using a chemical-EDT system is the best choice for this particular mission because of the short quantity of propellant left from previous stages of the mission.

GENERATION IN SUPPORT OF THE UNITED NATIONS PROGRAMME ON SPACE APPLICATIONS

Future Work

- Further simulation to refine the preliminary result
- Modelling the close approach, grabbing and stabilization of the space debris
- Simulating the EDT system using MATLAB

SENERATION IN SUPPORT OF THE UNITED NATIONS PROGRAMME ON SPACE APPLICATIONS

Acknowledgement

1. Analytical Graphics, Inc. (AGI)

2. Secure World Foundation

VERATION IN SUPPORT OF THE UNITED NATIONS PROGRAMME ON SPACE APPLICATIONS

Thank you!

Space Safety and Sustainability Group

Sustaining space activities for future generations

Email: sidr.aero@yahoo.com

Website: www.spacegeneration.org/sss

ENERATION IN SUPPORT OF THE UNITED NATIONS PROGRAMME ON SPACE APPLICATIONS