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Background

Efficient orbital maneuver capability will be an important component
of any in-space debris mitigation concept, whether it is to match
velocities with a resident space object, or to match a required state
prior to intercept.

Optimization of the continuous orbital maneuvers using electric
propulsion is not as straightforward as in the impulsive case, and
guaranteed optimization requires classical indirect methods.

Time-optimal control laws for orbital maneuvers can be produced by
solving the associated calculus of variations problem using Euler-
Lagrange theory in order to minimize the trip time between orbital
states.

Indirect methods of optimization can be used for complicated orbital
transfers using the continuation method, as an alternative to direct
methods such as collocation approximations



Problem Geometry Using Canonical Units

The scalar distance from the originis r

The time rate of change of ris u, where
u = dr/dt

The local horizontal component of
velocity is v, perpendicularto r

The polar angle does not appear in
the equations of motion, freeing one
constraint

For the 2D case, initialization requires
t, A, and 2,
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Final

For the 3D case, initialization requires t; ==

and four Cartesian costates (related to S/IC g o
2D case) I Y
3D end conditions can include angular o
momentum components / y X’



Optimal Control
Formulation

« Equations Of Motion In Polar Coordinates:
=

i =2-—-5+ Asing

7

V=—-24+ 4c0s ¢

* The Hamiltonian and cost functional (time):

b
H=L+1"e 7, J=der, L=1



Optimal Control
Formulation, Continued:

« Hamiltonian, Costates, and Control Law to be used in a
numerical shooting method:

H=1+Au+ /1“(",—_2—:—‘2+ Asm@)+ A (— 2+ Acos @)
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Initial Costate Model:
Regions Characterized by S Values

* Optimal Initial Costates, R =1.1 To 100, 2D Case:
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Initial Costate Model Formulation

* For high thrust to gravity ratio, or for short
arc transfers:

{, =28, 2,(00=5, 2,(0)=S

* Where the quantity S is defined as:

R—1

A

q



Numerical Examples



Europa Science Orbit Transfer

Final Inc = 70 & 120 deg, Acc = 0.01 (canonical)

Ewops Two Body Transfer (final state: r=35000 kem. =0, inc=70") DU=1660 8 km

Ecropa Two Body Trasafer (Tl state 34000 km, e=d, nc=120") DU=1660 8 km

Ewropa Two Body Transfer (fnal state 35000 km. e=0, inc=70%) DU=1680 8 km

0

Ewropa Two Body Tramafer (fnal state: 35000 km, @0, incn120%) OU=1660.8 km

-



Initial Lambda-U

GTO to GEO Transfer

Physical Trajectory

GEO Transfer Orbit to GEO Final
252 Revs, T=0,0006 in Canonical Units
I

Larpbda-U

Control Vector History

Costate Mistory, GEO Transfer Orbit to GEO Final
252 Revs, T=0.0006 in Canonical Units

Path crossings
imply possible
local minima

.I.ambdmv

Initializing the Optimal Control Law

Locus of Optimal Initial Costates
for Varying Thrust Levels

Initial Lambda-V

Revolutions to Complete Transfer to GEO

w0 *%o ) ad oo ne

Time of Flight (GEO Canonical)



Escape Velocity Example
Circular to Parabolic — Produced by Indirect Optimization

Physical Trajectory Control Vector History

Circle to Parabola Trajectory, ~80.2 Revs Costate History for Circle to Parabola
Thrust=0.0005, Rp=4 in Canonical Units Thrust=0.0005, Rp=4 in Canonical Units
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= No Path Crossings
“» * No Local Minima over Thrust
Similar to Impulsive Bi-Elliptic Transfers * No Discontinuities over Thrust

Red arcs are thrusting, blue arcs are coasting



Rotating
Frame

Earth to Moon 3-Body Example
Transfer from GEO to Lunar Orbit

Earth - Moon, 60 DU, mu = 0.0123
A = 0.002425, dm/dt = -0.000395, tf = 259 TU (41 days)

X

mO = 2400 kg, T = 1.3N, dm/dt = -0.000069 kg/s, r(0) = 42217 km
x0 = 7.348326, y0 = 0, Ix0 = 1.0, Ixdot0 = -0.1879, ly0 = -2 9974, lydot0 = 21.0667
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Summary

Classical indirect methods can optimize complex orbital transfers
without the use of direct collocation methods, because all of the
trajectory information is contained in the initial values of the costates

Starting from an ellipse with multiple revolutions will resultin
discontinuities in parameter searches, but these can be overcome by
modeling the initial costate patterns and estimating accumulated
velocity change to guide the parameter search

Starting from a smaller circular orbit to any final condition appears to
resultin a unigue, minimum-time solution trajectory

Checking for path crossings of the costate histories can predict
the existence of local minima versus unique solutions



Questions?



Numerical Example — Europa Science Orbit

Europa, circle-circle

init inc = 0 deg, final inc = 70 deg and 120 deg

L = 3201 km"3/s*2

r1 =(1560.8+100) km ( Europa’s radius + initial orbit altitude )
r2 = 35,000 km ( final orbital radius about Europa )

1 DU = 1660.8km

1TU = 1196.28s

1 MU = 25,000 kg

=1 DUA3/TU2
r1=1DU, r2=21.0742 DU

acc = 0.0033 and 0.01 DU/TU*2, mdot =0
3D Thrust angles:

alpha measured from x in x,y; beta "up" from x,y plane to position vector,
range: +/- 180 deg



