
## Policy Aspects of Space Debris and Space Sustainability

Technical Advisor
Secure World Foundation



#### How do we make space sustainability real?

Promoting Cooperative Solutions for Space Sustainability





#### **MACRO POLICY CHALLENGES**

Why is it so hard to get people to act?



#### What is public policy?

- "The principled guide to action taken by the administrative executive branches of the state with regard to a class of issues in a manner consistent with law and institutional customs" (Wikipedia)
- "The public and its problems" (Dewey 1927)
- "How issues and problems come to be defined, and how they are placed in the political and policy agenda" (Parsons, 1995)
- "How, why, and to what effect governments pursue particular courses of action or inaction" (Heidenheimer et al, 1990)



### **Policy analysis**

- Policy analysis has come to be dominated by economics
  - Definition of several alternative courses of action
  - Weighing the costs and benefits of each alternative
  - Choosing the alternative that best satisfies all the criteria
- Continual push for a more "scientific" (i.e., factual and unbiased)
  approach to developing, choosing, and implementing a policy
  option
- In the real world, the process by which policy happens and the people involved in the process play as big (if not a bigger) role than the "science"



#### Wicked vs tame problems

- Tame problems (mathematics, chemistry, chess) have clear
   objectives and resolutions, and can be resolved through application
   of scientific methods
- Wicked problems are those for which a purely scientific/rational approach cannot be applied (Roberts 2000)
  - Cannot explicitly define all the variables
  - Stakeholders have radically different worldviews and timeframes
  - Constraints and resources change over time
  - Problem is never resolved definitively



#### Characteristics of a wicked problem

- Cannot fully describe the problem without knowing what the solution is (the two are intertwined)
- No "stopping rule" (no explicitly-defined end state when you know you're done)
- 3. Solutions are not right or wrong, but better/worse or good/good enough
- 4. Each wicked problem is unique and novel
- Every solution is a "one-shot operation"
- 6. There is no explicitly defined set of all possible solutions from which the "best possible one" can be chosen



#### It gets worse...

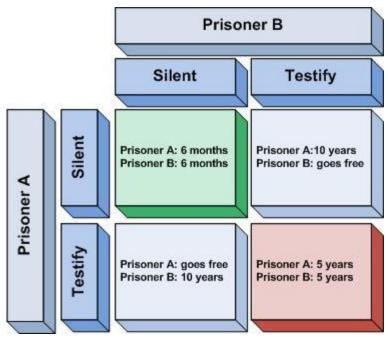
"Super Wicked Problems" have all of the characteristics of wicked problems, plus:

- Time is running out
- Those who are causing the problem are also seeking to provide a solution
- Central authority to resolve the problem is weak or non-existent
- Policy responses discount the future irrationally

...sounds a lot like space sustainability!



#### **Root cause: Collective action problems**


Promoting Cooperative Solutions for Space Sustainability

 Problems where the group would benefit from everyone taking a particular action, but the cost of doing so makes it implausible for any one individual to do so

Categorical example:

**Prisoner's Dilemma** 

- Many real world examples
  - Pollution
  - Cyber security
  - Management of natural resources
  - Voting



https://www.sovereignman.com/lifestyle-design/the-prisoners-dilemma-10293/



#### Strategies for tackling wicked problems

Promoting Cooperative Solutions for Space Sustainability

#### Authoritative

- Put solving the problem in the hands of a few stakeholders who have authority to define problem & develop solution
- Makes decisions & action easier, but the "experts" can be wrong

#### Competitive

- Many players all compete to solve the problem in their own way
- Improves odds of finding a good solution, but wasteful & can lead to violence (war is a free market with harsher penalties)

#### Collaborative

- Seek "win-win" solution instead of zero-sum
- Shared costs & pooled resources, but increased transaction costs in developing/implementing solution



## Conditions for employing a strategy (Roberts 2000)

- Power is concentrated and uncontested -> Authoritative
- Power is distributed and contested -> Competitive
- Power is distributed and uncontested -> Collaborative
- Research shows that people often have to fail into collaboration
  - Only after personal experience with authoritative and competitive strategies can people really understand their shortcomings
  - People have to learn what does not work before they are willing to absorb what are perceived as the "extra costs" of collaboration
  - Goes for interagency process within a government as well as between governments



#### MICRO "POLICY" CHALLENGES WITH SPACE DEBRIS

Policy, legal, and economic considerations



#### Main legal challenge is uncertainty

- Just about all of the legal challenges can be grouped into two areas:
  - 1. Lack of clarity and consensus on foundational principles
  - 50+ year old legal regime that was intended to stabilize the Cold War relationship between nuclear superpowers (but not do much else)
- It's a framework that provides broad guidance and direction, but not a lot of specificity
- Nothing explicitly prohibits removing space debris, but the uncertainty creates resistance to action



### How many "space objects" are there?

Promoting Cooperative Solutions for Space Sustainability

Important Note: Information in square brackets ([ and ] United Nations. Reference to external websites does no views expressed are those of the authors and do not ne

| Search Object      | Co thouse o |
|--------------------|-------------|
| found 7316 Objects | So there a  |
|                    |             |

| So there a |
|------------|
|            |

| International<br>Designator | National<br>Designator | Name of Space<br>Object                |
|-----------------------------|------------------------|----------------------------------------|
| [2016-001A]                 |                        | [BELINTERSAT 1]                        |
| [2015-083A]                 |                        | [GAOFEN 4]                             |
| [2015-082A]                 |                        | [EXPRESS<br>AMU1<br>(EUTELSAT<br>36C)] |
| [2015-081A]                 |                        | [ORBCOMM<br>FM 114]                    |

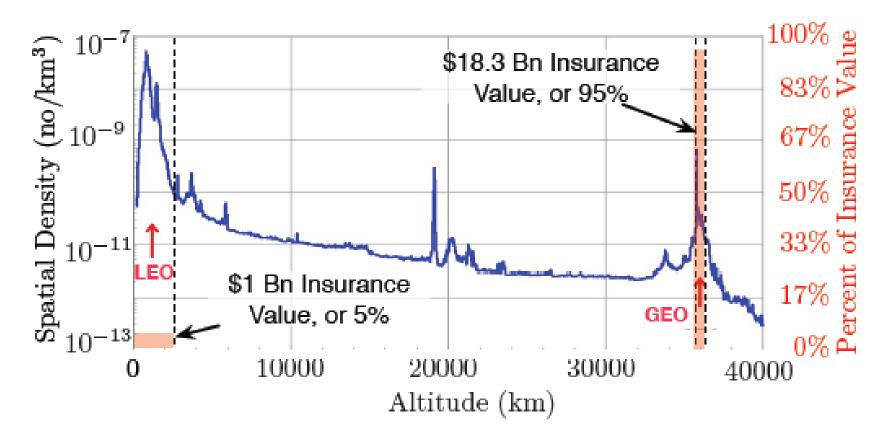
|                                     |      | • •                         |     |                     |                |                     |       |
|-------------------------------------|------|-----------------------------|-----|---------------------|----------------|---------------------|-------|
|                                     |      | IN ORBIT                    |     |                     |                |                     |       |
| COUNTRY                             | UNAS | SIGNED <sup>‡</sup>         | PA  | YLOAD <sup>\$</sup> | ROCKET<br>BODY | DEBRIS <sup>‡</sup> | TOTAL |
| UKRAINE (UKR)                       | 0    |                             | 1   |                     | 0              | 0                   | 1     |
| URUGUAY<br>(URY)                    | 0    |                             | 1   |                     | 0              | 0                   | 1     |
| UNITED<br>STATES OF<br>AMERICA (US) | 0    |                             | 127 | 5                   | 669            | 3418                | 5362  |
| UNITED<br>STATES/BRAZIL<br>(USBZ)   | 0    |                             | 1   |                     | 0              | 0                   | 1     |
| VENEZUELA<br>(VENZ)                 | 0    |                             | 2   |                     | 0              | 0                   | 2     |
| VIETNAM<br>(VTNM)                   | 0    | Not according to USSTRATCOM |     | 3                   |                |                     |       |
| ALL (ALL)                           | 3    |                             | 415 | 6                   | 2053           | 11264               | 17476 |
| 12                                  | -22] |                             |     |                     |                | orbit]              |       |

United

### Costs from space debris to any one operator are low

- Annual risk of collision in the worst region is about 0.8% per year
- Worst-case analysis: Cost to maintain a satellite constellation at 850 km for 20 years

| Constellation<br>Size | Replenishment<br>Cost<br>(\$B, No debris) | Replenishment<br>Cost<br>(\$B, Fatal only) | Replenishment Cost<br>(\$B, All impacts) |
|-----------------------|-------------------------------------------|--------------------------------------------|------------------------------------------|
| Small (5 sats)        | \$19.1                                    | \$20 <b>(+5%)</b>                          | \$20 (+5%)                               |
| Medium (20<br>sats)   | \$15.5                                    | \$16.5 (+6.5%)                             | \$17.16 <b>(+11%)</b>                    |
| Large (70 sats)       | \$7.6                                     | \$8.68 (+13%)                              | \$9.57 <b>(+26%)</b>                     |


Ailor, Womack, Peterson, and Murrell (2010)

Promoting Cooperative Solutions for Space Sustainability



#### Insurance is not going to help (much)

Promoting Cooperative Solutions for Space Sustainability



Schaub, Jasper, Anderson, and McKnight (2014)



#### The stark reality of economics

- The odds of developing an economic incentive mechanism for removing space debris in LEO are extremely small because there's little direct economic value in LEO (right now)
  - Nearly all the economic activity in space takes place in GEO
    - Total value of global space activities: \$280 billion
    - Total private benefits from LEO: ~\$3 billion
  - Almost all users of LEO are public entities deriving social benefits
- The debris problem was almost entirely created by governments using public money (legacy debt that needs to be dealt with)
- Any funding of debris removal or mitigation activities is likely to come from public money
  - Either as governments conducting missions themselves or purchasing services from private sector



#### STEPS TOWARDS A SOLUTION



#### The tragedy of the global commons

- Concept of "Tragedy of the Commons" was popularized by a 1968
   Science article by Garrett Hardin
  - "Multiple individuals, acting independently and rationally consulting their own self-interest, will ultimately deplete a shared limited resource, even when it is clear that it is not in anyone's long-term interest for this to happen" – Wikipedia
- Hardin suggested only two ways to avoid this tragedy
  - Leviathan (single hegemonic entity to manage the resource)
  - Privatization of the resource

Tragedy is that you can't solve the problem without destroying the commons

## SECURE WORLD FOUNDATION

### **Space as a Common Pool Resource (CPR)**

Promoting Cooperative Solutions for Space Sustainability

- Excludable: can prevent others from using the resource
- Rivalrous: someone else's use of the resource precludes your own use of it

|               | Excludable                                               | Non-excludable                                                   |
|---------------|----------------------------------------------------------|------------------------------------------------------------------|
| Rivalrous     | Private goods food, clothing, cars, personal electronics | Common goods (Common-pool resources) fish stocks, timber, coal   |
| Non-rivalrous | Club goods cinemas, private parks, satellite television  | Public goods<br>free-to-air television, air,<br>national defense |

Outer space as whole is a public good, but heavily used regions of Earth orbit (LEO, GEO) are Common-Pool Resources (CPRs)





- Won 2008 Nobel Prize in economics for her work on common-pool resources (CPRs)
- Discovered that there are many cases where the tragedy of the commons is false
  - Resources can be managed sustainably without either Leviathan or privatization
  - Resource appropriators self-organize to develop governance model that is suited to local conditions



 Distilled 8 principles which were common to all cases of successfully managed CPRs



#### **Ostrom's Principles**

- 1. Clearly-defined boundaries of the CPR (effective exclusion of external unentitled parties)
- 2. Rules regarding appropriation and provision of resources are adapted to local conditions
- 3. Collective-choice arrangements *allow most resource appropriators to participate in the decision-making process*
- 4. Effective monitoring by monitors who are part of or accountable to the appropriators
- Graduated sanctions (penalties) for resource appropriators who violate community rules
- 6. Low-cost and easy-to-access conflict resolution mechanisms
- 7. Self-determination of the community is recognized by higher-level authorities
- 8. In the case of larger common-pool resources: organization in the form of *multiple layers* of nested enterprises

Template for what political/legal/economic Mechanisms we might need for space

# SECURE WORLD FOUNDATION Promoting Cooperative Solutions for Space Sustainability

#### Success of debris mitigation

- Inter-Agency Space Debris Coordination Committee (IADC)
  - Members are national space agencies
  - 2007 published debris mitigation guidelines
  - Established "protected zones" in LEO and GEO, 25 year rule
  - UN endorsement in 2008, urged States to adopt on voluntary basis
- Some progress on national implementation
  - US, France, Germany, Russia, Canada, UK, Japan, and China have implemented or are working on implementation
- ESA research indicates 40-60% compliance with 25-year rule
  - Less compliance in LEO than GEO
  - No significant increase (or decrease) over last 13 years



### **UN Group of Governmental Experts (GGE)**

Promoting Cooperative Solutions for Space Sustainability

- UN Group of Governmental Experts (GGE) on Transparency and Confidence Building Measures (TCBMs) for Outer Space Activities
  - 15 experts (P5 + "representative" 10) nominated by countries
  - Asked to make recommendations for improving security & stability
- Delivered their report in October 2013
  - Information exchange and notifications
  - Risk reduction
  - Contact lists and consultative mechanisms
- Big issue: What next?

# SECURE WORLD FOUNDATION Promoting Cooperative Solutions for Space Sustainability

#### **Space Code of Conduct**

- EU Code of Conduct
  - Started with the French presidency of the EU in 2007
  - One of the first few exercises of EU foreign and security policy powers post-Lisbon Treaty
  - Adopted by EU in 2008, and offered up for international participation
- International Code of Conduct
  - Created in 2012, uses EU Code as basis
  - Multiple rounds of formal and informal international negotiations
  - August 2015 meeting ended with deferring entire issue to UNGA
  - Major disagreements
    - Definition of self-defense in space
    - Inside or outside the UN
    - Focus on security space, "peaceful" space, or both?



### **UN Long-Term Sustainability Guidelines**

Promoting Cooperative Solutions for Space Sustainability

- Working Group under the Scientific and Technical Subcommittee (STSC) of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS)
- Build on success of space debris mitigation guidelines and create voluntary "best practices" for space sustainability
  - Space debris and space operations
  - Space weather
  - National regulations and oversight
  - Sustainable use of space for sustainable development on Earth
- Formally began in 2009, hope to reach consensus by June 2016

# SECURE WORLD FOUNDATION Promoting Cooperative Solutions for Space Sustainability

#### **General lessons going forward**

- Learn from other domains, but don't copy/paste ideas
  - Air Traffic Management ≠ Space Traffic Management, but there are some useful concepts that might help
- Technical definitions/approaches are good places to start, but don't ignore politics
  - Wicked problems by definition cannot be solved through purely scientific/rational means
  - Need to have a cultural/behavioral/political dimension as well
- Push for a collaborative solution, but don't be surprised if it's the last thing that gets tried
- Recognize that not all stakeholders have the same perspective/priorities
  - Developed spacefaring countries have a different perspective from developing countries



#### **General lessons going forward (2)**

- Focus on developing policy interventions at multiple levels
  - International, national, and individual actor
- Don't discount value of incremental policies, or starting from coalitions of the willing
  - Start with a core constituency, and increase it over time
- Pay attention to the process & actors involved as much as the actual "solution"

# SECURE WORLD FOUNDATION Promoting Cooperative Solutions for Space Sustainability

#### Policy priorities moving forward

- Increased harmony between technical standards and national regulations on debris mitigation across all space actors
  - Increases benefits to those actors who adopt them
  - Creates a path dependency that makes it hard to go back
- Develop norms of responsible behavior in space that reinforce debris mitigation guidelines and other policy interventions
  - Reward good behavior, and criticize bad
  - Polite peer pressure (from NGOs?)
- Increased access to SSA data for all space actors (and the public)
  - Increases awareness of the problem, builds common understanding
  - Reinforces norms of behavior and costs of acting outside the norms

# SECURE WORLD FOUNDATION Promoting Cooperative Solutions for Space Sustainability

#### High-level plan of action

- Bilateral and multilateral discussions between States
  - Define self-defense in space
  - Rules of engagement (ROE) for military interactions
  - Are there behaviors/actions that should be off limits?
- National regulation and policy
  - Oversight of commercial on-orbit activities through "space traffic management"
  - Establish civil SSA and space safety authorities/responsibilities
- Satellite operator cooperation
  - Develop and implement best practices and norms of behavior
  - Set example for States, and push them to help make space more predictable for commercial development



### **Thank You. Questions?**

bweeden@swfound.org

#### References

- Dewey (1927) <u>The public and its problems</u>
- Parsons (1995) <u>Public policy</u>.
- Heidenheimer, Heclo, & Teich (1990) <u>Comparative public policy:</u>
- the politics of social choice in America, Europe and Japan
- Rittel & Webber (1973), <u>Dilemmas in a General Theory of Planning</u>, *Policy Sciences*, 4(2), pp. 155-169
- Roberts (2000) <u>Wicked problems and network approaches to resolutions</u>, *International Public Management Review*, 1(1), pp 1-19
- Levin, Cashore, Bernstein, & Auld (2012). <u>Overcoming the Tragedy of Super Wicked Problems:</u>
   <u>Constraining Our Future Selves to Ameliorate Global Climate Change</u>, *Policy Sciences*, 45(2),
   pp 123-152
- Ostrom (2000) <u>Governing the commons: The evolution of institutions for collective action</u>
- Ostrom (2009) <u>Beyond markets and states: Polycentric governance of complex economic systems</u>, *American Economic Review*
- Johnson (2014) <u>The UN COPUOS Guidelines on the Long-Term Sustainability of Outer Space</u>
   <u>Activities</u>, Secure World Foundation Fact Sheet
- Johnson (2014) <u>Draft International Code of Conduct for Outer Space Activities</u>, SWF Fact Sheet
- Johnson (2014) The UN Group of Governmental Experts on Space TCBMs, SWF Fact Sheet