Development of an Architecture of Sun-Synchronous Orbital
Slots to Minimize Conjunctions

B. Weeden® and K. Shortt.?
Secure World Foundation, Montreal, Quebec J4Z 2A5, Canada
Canadian Space Society, Toronto, Ontario M3K 2E1, Canada

Sun-synchronous orbit (SSO) satellites serve many important functions, primarily in the
areas of Earth reconnaissance and weather. The orbital parameters of altitude, inclination
and right ascension which allow for the unique utility of Sun-sync orbit limit these satellites
to a very specific region of space. The popularity of these satellite missions combined with
the use of similar engineering solutions has resulted in the majority of current Sun-sync
satellites within this region having very similar inclinations and altitudes while also spaced
around the Equator in right ascension, creating the opportunity for conjunctions at the
polar crossing points and a serious safety issue that could endanger long-term sustainability
of SSO. This paper outlines the development of a new architecture of SSO zoning to create
specific slots separating SSO satellites in altitude, right ascension and time at all orbital
intersections while minimizing the limitations on utility. A methodical approach for the
development of the system is presented along with the work-to-date and a software tool for
calculating repeating ground track orbits. The slot system is intended to allow for continued
utility of and safe operation within SSO while greatly decreasing the chance of collisions at
orbital intersections. This architecture is put forward as one possible element of a new Space
Traffic Management (STM) system with the overall goal of maintaining the safe and
continued used of space by all actors.

I. Introduction

N the summer of 2007, a group of 117 students from 24 countries participated in the International Space

University Space Studies Program, held in Beijing, China. A subset of 30 students worked on a team project on
the subject of Space Traffic Management.! One of the concepts discussed as part of that paper is the feasibility of
establishing a slot system for the Sun-synchronous region of Earth orbit, similar to that which is used in
geostationary orbit. The goal of this paper is further examine the concept of SSO slots through a more rigorous
treatment of the subject. In the process, several issues with the original SSO slot proposal in the 1ISU report will be
discussed.

This paper outlines the current situation with regards to SSO, including that of both operational satellites and
debris. From there it discusses the current solutions to the problem and how the slot concept works in conjunction
with those. This paper then presents a methodology for designing the slot architecture, based on the unique mission
design elements of SSO. Finally, it discusses the next steps to be taken and areas for further analysis. The intent of
this paper is not to thoroughly explain the underlying orbital mechanics that create the utility of SSO, but rather to
build on those concepts and discuss the issue of designing a slot architecture. The authors suggest reading the
excellent paper entitled “A-B-Cs of Sun-Synchronous Orbit Mission Design” by R. Boain for background on basic
Sun-synchronous orbital mechanics and mission design concepts. ?

Il. Current Situation in SSO

The primary entity tracking objects in Earth orbit is the United States Strategic Command’s Joint Space
Operations Center (JSpOC) at Vandenberg Air Force Base, California. The JSpOC currently tracks man-made
objects in Earth orbit, including both debris and operational spacecraft data is published publically in the satellite
catalog on the Space Track website found at http://www.space-track.org. This catalog consists of objects greater

! Technical Consultant, Secure World Foundation, 5610 Place Bayard, Brossard, Quebec J4Z 2A5, Canada
2 President, Canadian Space Society, Parc Downsview Park, 65 Carl Hall Road, Toronto, Ontario M3K 2E1, Canada

1

American Institute of Aeronautics and Astronautics
092407

than 10 cm in diameter, as this is the generally-accepted lower limit of current tracking capability.®* As of 1 August
2007, out of the entire satellite catalog there were 4192 tracked objects in low Earth near-polar orbits, defined as
objects with apogees less than 2,000 kilometers and inclinations between 96.5 and 102.5 degrees. 2 Of these,
approximately 138 were active satellites. > The region bounded by the aforementioned inclination and altitude ranges
will be used in this paper to define the SSO region of Earth orbit. Figures 1 through 4 below were developed using
the data from the Space Track catalog and show the distribution of all near-polar objects and all active satellites,
respectively, as a function of this inclination and altitude.

250

200 +

150

Number of Objects

50 A

o o
—
—
—

o
™~
o
—

270
310
350
390
430
470
510
550
590
630
670
710
750
790
830
870
910
950
990
1030
1070

1190
1230
1310
1350
1390
1430
1470
1510
1550
1590
1630
1670
1710
1750
1790
1830
1870
1910
1950
1990

Apogee (kilometers)

Figure 1. All space objects in near-polar LEO orbit by apogee

2

American Institute of Aeronautics and Astronautics
092407

Number of Objects

400

250 A

200 A

150 A

100 A

50 4

a -

L A T LN L e N Lo

9 A o SRR
A R P E RIS S RN g LA &S s

Inclination (degrees)

N b LG
R N N N T S S
¢§> NPT ART R DT BT R P

Figure 2. All space objects in near-polar orbit by inclination

Number of Satellites

14 4

12

10 A

400

o
m
=t

o
I}
=t

O O 0O g 0O 000 OO0 O0O0O0OGQQOoO o O
S N @~ g M~ O M W ;oo @ o T =
e T T T T - R LT S < I B s B = B = T =

1000
1030
1060
1090
1120
1150
1180
1210
1240
1270
1300
1330

Apogee (kilometers)

1360

1390

1420

1450 ——

1480

Figure 3. All active spacecraft in near-polar LEO orbit by apogee

3

American Institute of Aeronautics and Astronautics
092407

40 4

35

30

25

20 +

Number of Satellites

15

10

o -

T - T e S S T S T S T S S S T e S - TP R S ot
L R T T T T~ L g P S
i A ESECAE I L L S A S (A G N SR SN S S T M SR LU

Inclination (degrees)

Figure 4. All active spacecraft in near-polar LEO orbit by inclination

From these plots, two things are apparent. First, the two populations, all objects and active satellites, share
similar distributions and are located in the same regions of space. This is not surprising as the debris is largely a
function of space activity and thus the location of the debris should be strongly correlated with the locations of high
space activity. Sun-synchronous orbit certainly counts in this regards. Secondly, the active satellites are clustered in
a narrow band of inclinations between 97° and 99° and between 500 km and 900 km in altitude. This indicates that
there is a “sweet spot” in the Sun-synchronous zone where mission designers and engineers have coalesced towards
common designs and solutions.

Similar graphs showing the geostationary (GSO) population would show an even higher correlation to a specific
altitude and inclination, as operational satellites in that region are essentially all following the same orbit but are
spaced along that orbit in anomaly (or latitude as seen from the Earth’s surface). The situation in SSO is different
because there is an additional orbital parameter that is critical to SSO mission design but not GSO: right ascension.
SSO satellites are spaced in right ascension around the Equator which creates zones at both poles where the orbits
cross every revolution. Figure 5 shows the orbits of the active SSO satellites and these zones can clearly be seen.’

4

American Institute of Aeronautics and Astronautics
092407

Figure 5. Sun-synchronous satellite orbit crossing at the North pole.

These crossing zones, coupled with the higher debris density, creates a much higher risk of collision for SSO as
compared to GSO where all the satellites are essentially moving in the same direction and thus head-on collisions
are rare. Collisions in SSO are still rare but the number of conjunctions is steadily increasing, resulting in more
spacecraft performing avoidance maneuvers.® A spacecraft conjunction is defined here as the situation in which two
spacecraft trajectories intersect presenting the possibility of a collision. The process used to determine if such a case
exists is called conjunction assessment.

The number of satellites in SSO is expected to continue to grow as more countries seek remote sensing data and
services such as Google Earth which utilize the data proliferate. Euroconsult recently released a new report which
predicts that 199 additional Earth observation satellites will be launched by 29 countries between 2007 and 2016.”
Many of those satellites will be placed into SSO orbits. And unlike GSO, there are currently no restrictions on where
actors can place satellites within SSO.

This predicted growth of the SSO population, coupled with the lack of structure, indicates there is an increasing
need to develop a system or architecture to minimize the probability of collisions and better predict conjunction
opportunities. The following sections will outline possible solutions to this problem and their implications on SSO
design constraints. This will then lead to the rationale for construction of an SSO architecture that can be developed
to minimize spacecraft conjunctions while allowing for maximum utility of Sun-synchronous orbit.

I11. Possible Solutions

In order to minimize and potentially solve the problem of SSO conjunctions and safety, a three-pronged
approach needs to be taken as summarized by Figure 6. The first essential piece is debris mitigation. These efforts
are aimed at both minimizing the creation of debris and the impact of debris on spacecraft. As result of the high
priority given to this subject by the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOQS),
the Inter-Agency Space Debris Coordination Committee (IADC) was formed. Over the course of the last few years,

5

American Institute of Aeronautics and Astronautics
092407

the IADC has developed a set of debris mitigation guidelines which have subsequently been adopted by UN
COPUOQOS. While an important first step, these effect guidelines can have on the overall collision problem is limited.
The guidelines can only apply to certain existing satellites and those new satellites launched by States which adhere
to the standards.

Debris
Mitigation

Figure 6. The three main thrusts of space sustainability.

To tackle the problem of existing space debris and uncontrolled satellites, it is necessary to develop a means to
remove debris from orbit. Many methods have been proposed, including using lasers to reduce debris’ altitude and
hasten natural decay, “space tugs” to physically pick up pieces and large “nets” to capture debris. A long-term
feasibility study on this topic was commenced at the 2006 International Astronautical Congress in Valencia, Spain.
This study is due to report in mid to late 2009. However, most of the current technologies for accomplishing
removal of debris are either technically or economically unfeasible and are likely to remain so for some time. This
places debris removal as a solution for the future and not the present.

The third piece of comprehensive orbital safety and collision prevention is some level of Space Traffic
Management. This is defined as a set of parameters and measures with the aim of maximizing sustainable use and
the continued availability of orbital resources while simultaneously minimizing the risk of unintentional physical or
radio-frequency interference to operational spacecraft. Within this definition, the concept of defining slots for
specific orbital regimes can be an effective solution. An example of this has already been mentioned: the
geostationary belt, in which slots of a certain longitude are defined and managed under international law within the
International Telecommunications Union. This paper will outline a proposal for a similar slot system for the Sun-
synchronous orbit regime.

IV. SSO Mission Design Constraints

To understand why the current SSO population exists in the form that it does, the underlying orbital mechanics
which dictate the unique SSO utility must be analyzed, and from this analysis the mission design considerations can
be understood. The primary factor in SSO orbits is commonly referred to as the SSO condition. ? This condition is
defined as an orbit who’s right ascension, referenced to the First Point of Aries, precesses Westward at a rate of
0.9856 degrees per day.? This precession allows the orbit to move around the Earth exactly counter to the Earth’s
rotation around the Sun, thus preserving the Sun-Earth-satellite angle for which the orbit is so named. For low Earth
orbit, the continuum of inclinations and matching altitudes which give the proper precession rate can be calculated.?

The second major mission design consideration is the number of revolutions before the satellite’s ground track
repeats. Repeating Ground Track (RGT) is a key element in the temporal resolution of a SSO satellite. The
preceding continuum of inclinations and altitudes can be quantized by eliminating those altitude/inclination pairs
which result in a non-integer RGT.2 Once winnowed in this fashion, an additional key characteristic is discovered.
The integer number of revolutions within which the orbit repeats is equivalent to the number of Equator crossings
the satellite makes before repeating its ground track.? Thus, the maximum swath width at the Equator that the
satellite payload must cover is defined. Figure 7 shows the 1 Day and 2 Day RGTs along with their corresponding
nodal spacing.

6

American Institute of Aeronautics and Astronautics
092407

Repeat Interval Period Altitude Inclination Node Spacing
(minutes) (km) (degrees) (km)
1 Day 12 Rev 120.0 1680.78 102.96 3339.58
1 Day 13 Rev 110.77 1262.01 100.73 3082.69
1 Day 14 Rev 102.86 893.72 99.01 2862.50
1 Day 15 Rev 96 566.83 97.66 2671.67
1 Day 16 Rev 90 274.35 96.58 2504.69
2 Day 23 Rev 125.22 1912.71 104.35 1742.39
2 Day 25 Rev 115.20 1464.42 101.77 1603.00
2 Day 27 Rev 106.67 1072.19 99.81 1484.26
2 Day 29 Rev 99.31 725.58 98.29 1381.89
2 Day 31 Rev 92.90 416.66 97.09 1292.74

Figure 7. The 1 Day and 2 Day repeating ground tracks with variation in

The third major mission design consideration is the Mean Local Time (MLT) at which the satellite passes over a
location on the Earth and is as function of the orbit’s right ascension around the Earth’s equator.? This feature can be
of critical importance for science applications where the satellite is measuring a precise effect requiring specific
solar lighting conditions, or when a satellite is designed to add to an existing data set for a particular time of the day.
Because of the primary uniqueness of SSO, i.e. the constant satellite-Earth-Sun angle, the right ascension, and thus
MLT, can be set at launch and over the course of time the precession of the satellite’s right ascension will maintain
the proper angle.

The fourth major design consideration is the so-called “frozen orbit.” These are orbits which try to “freeze” one
or more Keplerian elements by utilizing perturbation effects to balance out overall changes in those elements.?2 An
example is the critical inclination, most well-known for its use in the Molniya orbit.® These highly elliptical orbits
are designed so that a satellite can hang over high latitudes of the Earth for long periods, typically 8 to 9 hours of its
12 hour period. Apsidal line rotation moves perigee around the orbital plane over time, severely limiting the utility
of such an orbit. However, at the critical inclination of 63.4° (and its supplement 113.5°), the J2 effects of the Earth
dampen out this rotation. A similar effect can be used for SSO satellites to remove the variances in altitude using
eccentricity.? This is desired to maintain a constant distance between the target and the satellite for consistent
imaging.

Thus the orbital characteristics of any SSO satellite is largely constrained by the particular mission that designers
wish it to fulfill. The altitude and inclination are prescribed by both the required SSO precession rate and the desired
temporal and spatial resolution. The satellite’s right ascension of ascending node is defined by the desired MLT, and
it’s eccentricity by the need to minimize apsidal line rotation via “freezing.” The challenge in designing a slot
architecture for SSO is restricting the orbits within which a satellite can be placed while simultaneously allowing for
continued flexibility in the mission design. A slot architecture which removes all possibility of collision with another
satellite but also constrains the utility of SSO leaves the satellite user with a safe but useless orbit.

V. Proposed Slot Architecture Methodology

The authors propose that an SSO slot architecture should initially be designed by first calculating, within reason,
all the potentially usable SSO orbits. Once this set of all possible solutions is compiled, it can be crystallized into a
structure within which all current and future SSO satellites can be placed. This method also has the benefit of
quantizing what is in nature a continuum of orbits and thus reduces an infinite solution set to a finite one.

The first step in this process is to calculate all of the integer RGT orbits from the SSO condition continuum. B.
Weeden has written a simple C software program to do this for a given minimum and maximum altitude range. A
full description of the program can be found in Appendix A. Using this program and filtering for a minimum and
maximum altitude of 250 km and 2,000 km, and between 1 and 20 day repeat intervals, results in 1,673 unique
altitude/inclination pairs. To minimize conjunctions, the authors propose that only orbits with an altitude separation
equivalent to the positional error plus a safety margin be used. As an example, if all SSO objects were known with a
positional error of 4 km, a reasonable safety margin of 1 km could be added and thus SSO orbits with at least 5 km
spacing would be required. Within each of these orbital, multiple satellites could be separated by mean anomaly to
allow for maximum utilization of the orbit. From the resulting solution set, satellite mission planners can choose
their desired RGT and swath width and thus the slot within which they need to place their satellite.

7

American Institute of Aeronautics and Astronautics
092407

The above slot architecture would significantly decrease the chances of collisions between operational satellites
by spacing them in altitude and anomaly and the resulting orbits would never cross under normal situations.
However, once mission designers start to specify a range of desired MLTSs, the satellites would have varying right
ascension around the Equator and the opportunity for conjunctions at the poles is once again introduced. A possible
solution to minimizing these conjunctions is to develop a phasing system such that satellites at the same altitude
with different right ascension cross the poles at different times. This can be achieved by varying the true anomaly
for each of these satellites.

Any proposed SSO slot architecture, such as the one described above, needs to be critically analyzed to
determine the proper balance between increased safety and decreased utility. The key question to answer is whether
or not such a system is still flexible enough to allow for the continued utility of SSO. Any design constraints such a
system imposes on satellite engineering needs to also be examined.

Additionally, the effects of temporal changes in such a slot architecture, both natural and man-made, need to be
examined in detail. Many SSO satellites maneuver periodically to correct for changes in altitude and inclination
caused by perturbations. Such station-keeping maneuvers need to be studied carefully for their effects on critical
orbital elements, such as the anomaly spacing necessary to maintain the phasing at polar crossings. This could
possibly lead to the requirement for owner-operators with polar conjuncting satellites to coordinate their station-
keeping maneuvers.

VI. Conclusion

The current situation in Sun-synchronous orbit, as described in Section I, presents an increasingly dangerous
scenario for the long-term sustainability of this particularly useful region of Earth orbit. This danger is compounded
by the current lack of structure to where satellites can be placed within these orbits and the projected growth in
usage of SSO. A Sun-synchronous zoning system, similar in theory to that of geostationary orbit, can be one
effective component in a solution to this problem

The difficulty in designing a SSO slot system lies in the restraints placed on the Keplerian elements due to the
orbital mechanics of SSO. The addition of variability in right ascension makes this a much more difficult problem
than developing GSO slots. However, there are potential solutions that would provide the right balance between
safety through structure and utility through flexibility. Quantizing the feasible range of inclinations and altitudes
provides for a selection of orbits with different ground repeats. Further analysis on methods of phasing polar
crossing would allow for flexibility in MLT.

Appendix

This Appendix contains the source code for a simple C program written to demonstrate one possible
implementation of the methodology outlined in this paper. The program takes a minimum and maximum altitude
and a range of integer days. It then produces all SSO orbits with RGTs over the range of days and within the
specified altitude ranges. This data is then fed to an output text file which can easily be imported into Excel as a
space separated file. The source code draws upon equations listed in Ref 2 and Ref 8. The software is not intended to
be used for any mission planning or engineering purposes but solely as an experimental tool to test the feasibility of
this paper’s methodology. Figures 8 and 9 below show screenshots of sample user inputs and program out.

Future plans are to add a function that will filter the resulting orbits for a desired altitude spacing and also the
ability to calculate the right ascension to provide the required MLT. Once these functions are implemented, the
software will be able to generate any one of a number of possible SSO architectures, each of which can then be run
through traditional conjunction assessment software to empirically test whether or not it provides any reduction in
possible collisions and added safety to SSO satellite operations.

8

American Institute of Aeronautics and Astronautics
092407

The purpose of this program is
orhits with rational repeating
and altitudes specified by the
Enter the starting # of repeat

the end # of repeat days

to calculate all the Sun—synchronous
ground tracks within the range of days
used.

days between 1 and 568: 1
hewteen 1 and 58: 4

the minimum orbital altitude <in km>: 250

the maximum orbital altitude <(in km)>: 28048

29 total valid solutionz found

over entire range of days.
L5 solutions rejected outside altitude range of 258 to 2008.
20 solutions rejected for duplicate period.

The resultsz have bheen written to the sso.dat file
located in the same directory sso.exe was ran from.

Preszs any key to continue . . .

Figure 8. Sample user input and command window output for sso.exe

File Edit Format Wiew Help

DTG of Run: Fri Apr 11 14:19:13 2008

start # of Days: 1

End # of Days: 4

Minimum altitdue: 250 km

Maximum altitude: 2000 km

Repeat Period (min) Altitude (km) i (deg) a (km) Node spacing (km)
1p0012 120, 000000 1680, 782044 102. 965684 8058.917044 3339.583677
10013 110.769231 1262.016670 100.727818 7640.151670 3082.892625
1Dp0014 102. 857143 893,725258 99,008743 7271.860258 2862.500295
1p0015 96. 000000 566. 8296495 97.660441 6944.964695 2671.666942
1p0016 90. 000000 274.354941 96.584383 6652.489041 2504.687758
2Dp0023 125.217391 1912.713668 104. 346910 8290. 848668 1742.391484
2D0025 115. 200000 1464.419396 101.769937 7842.554396 1603. 000165
2D0027 106. 666667 1072.186877 99, 814143 7450.321877 1484.259412
2D0029 99,310345 725.58B0287 98.295292 7103.715287 1381. 896694
2D0031 92.903226 416. 660903 97.093186 6794.795903 1292.742069
3D0034 127.058824 1993. 798567 104.855281 8371.933567 1178.676592
3D0035 123.428571 1833. 564000 103. 863587 §211.699000 1145.000118
3D0037 116.756757 1534. 914858 102.150033 7913.049858 1083.108220
3D0038 113. 684211 1395.473306 101.406856 7773.608306 1054.605372
300040 10&. 000000 1134.144260 100.105763 7512.279260 1001. 875103
3D0041 105. 365854 1011.491369 99.534521 7389.626369 977.439125
300043 100. 465116 7BO. 541675 98.523770 715B.676675 931.976840
300044 98.181818 671.661820 98.075528 7049.796820 910.795548
3000486 93.913043 4565, 809784 97.275358 6843. 944784 B71.195742
3D0047 91.914894 368. 385011 96.917496 6746. 520011 B52.659662
4D0047 122.553191 1794.691961 103.630803 8172.826961 B52.659662
4D0049 117.551020 1570.761140 102. 346796 7948. 896140 B17.857227
4D0051 112.9411786 1361. 564369 101.231382 7739.699369 785.784395
4D0053 108.679245 1165.609361 100. 256287 7543.744361 756.132153
4D0055 104.727273 9EB1. 604053 99. 399008 7359.739053 728.636439
4D0057 101.052632 808.423815 98.641420 7186. 558615 702.070248
4D0059 97.827119 645. 083847 97.968778 7023.218847 679.237358
4D0061 94.,426230 490.719535 97.368974 6868, 854535 656. 967281
4D0063 91.428571 344, 566727 96. 831987 6722.701727 636.111177

Figure 9. Sample output text file for sso.exe

9

American Institute of Aeronautics and Astronautics

092407

This program has been written to calculate the orbital parameters for Repeating
Ground Track (RGT) Sun-synchronous orbits (SSO). It is a rough outline of the
methodology outlined in the paper "Developmenet of an Architecture of Sun-

Synchronous Orbital Slots to Minimize Conjunctions" by B. Weeden and K. Shortt.

The user will specify the integer number of days to start and stop the calculation
as well as the minimum and maximum acceptable altitudes. The program will run
through all possible orbits that repeat on integer intervals with the specific days
and filter the results to include only those orbits within the prescribed altitude
ranges. The program will also filter the results to exclude any orbits that were
already found in the previous day's solution set.

Many of the calculations are based on equations in the paper by Ronald Boain titled
"A-B-Cs of Sun-Synchronous Orbit Mission Design" presented at the 14th AAS/AIAA
Space Flight Mechanics Conference, Feb 8-12, 2004. AAS04-108.

Last Modified: 4/4/08
Copyright (C) <2008> <Brian Weeden> <brian.weeden@gmail.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

___ */
#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#define PI 3.141592654 //PI in radians

#define CIR_EARTH_KM 40075.16 //Circumference of the Earth in km

#tdefine A_EARTH_KM 6378.135 //Radius of the Earth in km

#tdefine MU 3.986005E14 //mou for the Earth

#tdefine J2 0.00108263 //32 for Earth

#tdefine OMEGA_SSO_DEG 0.9856 //Rate of nodal change needed for SSO in deg/day

#tdefine NOT_FOUND -1

//Main function.

int main(void)

{
double

10

American Institute of Aeronautics and Astronautics
092407

P_min, //Period in min

P_sec, //Period in sec

a_km, //Semi-major axis in km

alt_eq_km, //Altitude at the Equator in km
inc, //Inlincation in degrees
GT_int_deg, //Ground Track repeat in deg
GT_int_km, //Ground Track repeat in km

R, //Repetition Revs

*period, //Pointer to array of valid periods
data[5000][7]; //Array for valid solution data

int

D, //Repetition Days

D_init, //Start # of days

D_end, //End # of days

alt_min, //Minimum orbital altitude in km
alt_max, //Maximum orbital altitude in km
dupe=-1, //Duplicate signal

i=0, //Day loop counter

j=0, //Rev loop counter

k=0, //Array loop counter

1=0, //Day solution counter

m=0, //0Overall solution counter

n=0, //Rejections due to altitude range counter
0=0; //Rejections due to duplicate period counter
char

buffer[10], //Array for user character input
*pPath; //Pointer to exe path

FILE

*outpl, //output file 1

*outp2; //output file 2

//Intro to the user
printf("The purpose of this program is to calculate all the Sun-synchronous");
printf("orbits with rational repeating ground tracks within the range of days");
printf("and altitudes specified by the used.");

// TODO (Brian#2#): Insert code to ask for desired nodal separation

/*First we need to get the number of repeat days to start and end from the user
along with the min and max altitudes.*/

printf("the starting # of repeat days between 1 and 50: ");

scanf("%d", &_init);

printf("the end # of repeat days bewteen 1 and 50: ");

scanf("%d", &D_end);

printf("the minimum orbital altitude (in km): ");

scanf("%d", &alt_min);

printf("the maximum orbital altitude (in km): ");

scanf("%d", &alt_max);

//Open the output file

11

American Institute of Aeronautics and Astronautics
092407

outpl = fopen("sso.dat", "w");
//Insert current DTG timestamp in output file

time_t rawtime;
struct tm * timeinfo;

time (&rawtime);
timeinfo = localtime (&rawtime);
fprintf (outpl,"DTG of Run: %s", asctime (timeinfo));

/*Writing the user inputting values to the output file*/

fprintf(outpl,"Start # of Days: %d# of Days: %daltitdue: %d kmaltitude: %d
km",D_init,D_end,alt _min,alt max);

fprintf(outpl, "Repeat Period (min) Altitude (km) i (deg) a (km)
Node spacing (km)");

//Initialize the number of days to user input.

D = D_init;

/*We now have to dynamically allocate the memory for all the arrays. The length
of the array will be [5][x] where x is the max limit for the number of solutions.

Each cell will be equal to the size of a double precision floating point numer.
X is assumed to be 5000 for all practical purposes.*/

period = malloc (sizeof *period * 5000);

//Now a little message to the user to indication the program is starting.

printf("# of Days to repeat: %d",D);
printf("calculations...");

//This for loop will go through each of the days between D_init and D_end.

for (i=D_init; i <= D_end; i++)

{

printf("Loop counter: %d",i);
//This for loop will go through each of the revs between D*10 and D*15 and calculate
period, a, altitude, fundamental interval, and the interval between nodes.

for (j=D*10; j <= D*20; j++)

{

dupe = -1; //Reset dupe flag

R=17;

P_sec = 86400 * D / R; //Period in seconds is seconds in a day times
days over revs/day

P_min = P_sec / 60.0; //Conversion to period in minutes

a_km = 331.25 * cbrt(pow(P_min,2)); //Semi-major axis from Astro
Cookbook

alt_eq_km = a_km - A_EARTH_KM; //From Boain

GT_int_km = (2 * PI * A_EARTH_KM) / R; //From Boain

GT_int_deg = 360.0 / R; //From Boain

inc = acos(OMEGA_SSO DEG / (-0.013324511 * cbrt(pow(R/D,7))))*180/PI;

12

American Institute of Aeronautics and Astronautics
092407

//From Astro Cookbook (converted to degrees at end)

printf("Loop counter: %d",j);

printf("Days to repeat: %d",D);

printf("Revs to repeat: %1f",R);

printf("Period: %1f sec",P_sec);

printf("Period: %1f min",P_min);
printf("Inclination: %1f deg",inc);
printf("Semi-major axis: %1f km",a_km);
printf("Altitude above Equator: %1f km",alt_eq_km);

/*We now check the calculated altitude to see if it falls within the
user-defined
max and min. If yes, we the enter a loop to check the new period against

all the
previous solutions stored in the period array to ensure it is not a
duplicate.
If it is a dupe, we exit the loop and proceed to the next rev. If it is
new,
it gets written to the end of the period array and the output file.*/
if (alt_eq_km > alt_min && alt_eq_km < alt_max)
{
printf("valid altitude.");
while (dupe == -1)
{
for (k=0; k <= (m-1); k++)
{
if (period[k] == P_sec)
{
printf("Duplicate period...");
dupe = 1; //set dupe flag
k = m; //set k to force exit of array loop
O++; //increment counter for duplicate period
rejections
}
}
if (dupe == -1)
{

printf("New solution found...");
period[k] = P_sec; //write valid period to period array

//write all data to data array
data[k][@] = D;

data[k][1] = j;

data[k][2] = P_min;

data[k][3] = alt_eq_km;

data[k][4] = inc;

data[k][5] = a_km;

data[k][6] = GT_int_km;

fprintf(outpl, "%dD%4.4d %12f %121f %12f %121F

%12f",D,j,P_min,alt_eq_km,inc,a_km,GT_int_km);

13

American Institute of Aeronautics and Astronautics
092407

for

day

/7

/7

%d .

/7
//
%d
//
//

SSO

//R

//C

1++; //increment the counter for the valid solutions

each day
m++; //increment the counter for total valid solutions
dupe = 1; //set dupe flag to exit while loop.
}
}
}
else
{
n++; //increment counter for altitude rejections
}
}

/*At the end of each day we need to print out the total solutions for that
and then move to the next day.*/

printf("%d valid solutions found for %d day repeat.",1,D);
fprintf(outpl, "%d valid solutions found for %d day repeat.",1,D);

D++; //increment the number of days

1=0; //reset the day solution counter

}

TODO (Brian#l#): Add filter to search for valid answers separated by x in distance
printf("%d total valid solutions found over entire range of days.",m);
printf("%d solutions rejected outside altitude range of %d to
",n,alt min,alt_max);
printf("%d solutions rejected for duplicate period.",o0);
fprintf(outpl,"%d total valid solutions found over entire range of days.",m);
fprintf(outpl,"%d solutions rejected outside altitude range of %d to

.",n,alt min,alt max);

fprintf(outpl,"%d solutions rejected for duplicate period.",o0);
Insert printf to let user know where sso.dat is

printf("The results have been written to the sso.dat filein the same directory
.exe was ran from.");

elease any array memory.
free (period);

lose output file.
fclose(outpl);

system("PAUSE");
return(0);

14

American Institute of Aeronautics and Astronautics
092407

Acknowledgments

The authors would like to thank all of their fellow students from the Space Traffic Management Team Project at
the 2007 International Space University Summer Session Program in Beijing, where our concept of SSO zoning was
originally developed. Special thanks to William S. Marshall of NASA AMES who was our mentor and the Team
Project Co-Chair. The authors are especially indebted to Ronald J. Boain from the Jet Propulsion Laboratory for his
excellent paper, The A-B-Cs of Sun-Synchronous Orbit Mission Design, which provided much of the theoretical
foundation for this paper. Finally, B. Weeden would also like to thank Analytical Graphics, Inc. for their generous
donation of their Satellite Tool Kit software to help with this project.

References

Anilkumar, AK et al, “Space Traffic Management,” International Space University, Space Studies Session 2007, Beijing
China. [online], URL: http://www.isunet.edu/index.php?option=com_docman&task=doc_download&qgid=371 [cited 1 February
2008].

?Boain, R. J., “A-B-Cs of Sun-Synchronous Orbit Mission Design,” Advances in the Astronautical Sciences, Vol. 119, Part 1,
2004, Pages 85-104.

3Committee on Space Shuttle Meteoroid/Debris Risk Management, Protecting the Space Shuttle From Meteoroids and
Orbital Debris, National Academies Press, 1997, pp. 36.

“Klinkrad, H., Space Debris: Models and Risk Analysis, Birkhauser, Berlin, pp 2.1.

STK, Satellite Toolkit, Software Package, Ver. 8.1.1, Analytical Graphics Incorporated, Exton, PA, 2007.

SNASA Orbital Debris Program Office, Orbital Debris Quarterly News, Vol 11, Issue 4, 2007, pp. 2.

"Keith, A., Satellite-Based Earth Observation — Market Prospects to 2017, Euroconsult, Paris, 2008.

8vallado, D.A., Fundamentals of Astrodynamics and Applications, 3" ed., Springer-Microcosm Press, New York, 2007, pp.
838.

15

American Institute of Aeronautics and Astronautics
092407

http://www.isunet.edu/index.php?option=com_docman&task=doc_download&gid=371

	I. Introduction
	II. Current Situation in SSO
	III. Possible Solutions
	IV. SSO Mission Design Constraints
	V. Proposed Slot Architecture Methodology
	VI. Conclusion
	Appendix
	Acknowledgments
	References

