International Crop Production Forecasting Component of World Agricultural Supply and Demand Estimate (WASDE)

- United States Department of Agriculture (USDA)
- Foreign Agricultural Service (FAS)
- International Production Assessment (IPA)

United States Department of Agriculture (USDA)

- International crop production forecast process
- World Agricultural Supply and Demand Estimate report (WASDE)
- published by World Agricultural Outlook Board (WAOB)

WAOB Chaired Meetings: Cotton, Oilseeds, Rice, Grains

WAOB Arbitration: FAS, WAOB, ERS, JAWF

WASDE Report

FAS Lockup Commodities

Monthly review of available crop condition data. Crop estimates revised as needed. Production estimates are first step in S&D balance sheet. These estimates form basis of the WASDE report.

- Food Wheat, Rice
- Feed Grains
 Corn, Barley, Oats, Sorghum, Rye
- Oilseeds
 Soybeans, Sunflower, Rapeseed, Peanuts, Palm
- Cotton

Mandate and Mission for Global Crop Production Analysis

Monthly International Production Crop Monitoring Reports on Area, Yield and Production of Major Grains, Oilseeds and Cotton

- 1. FAS Strategic Plan 2010-2015 (page iv)
- 2. OMB Principle Federal Economic Indicator
- 3. Code of Federal Regulations TITLE 7 AGRICULTURE Under Secretary for Farm and Foreign Agricultural Services: "...Conduct studies of worldwide production..."

Develop Country/Commodity Balance Sheets

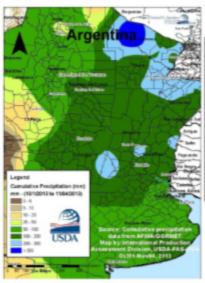
SUPPLY = DEMAND

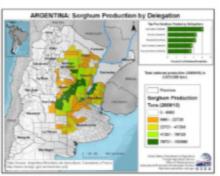
WAOB Chaired Meetings: Cotton, Oilseeds, Rice, Grains

WAOB Arbitration: FAS, WAOB, ERS, JAWF

WASDE Report

Monthly FAS Report: World Agricultural Production (WAP)


United States Department of Agriculture


Foreign Agricultural Service

Circular Series WAP 11-13 November 2013

World Agricultural Production

Argentina Sorghum: Estimated Production Reduced Due to Lower Planted Area

Argentine sorghum has benefitted from recent rainfall. (image USDA/FAS/OGA/IPAD)

The USDA forecasts Argentine sorghum production for 2013/14 at 4.6 million metric tons, 15 percent below September's estimate and 8 percent below the 5.0 million tons grown last year. Harvested area is estimated at 1.0 million hectares, 17 percent lower than September's estimate and 13 percent less than last year. Yield is estimated at 4.60 tons per hectare, 2.0 percent higher than September's estimate, and 5.8 percent higher than last year.

Argentine producers are facing low returns due to a drop in crop prices and an unfavorable exchange rate. Many farmers will likely switch from sorghum to soybeans due to its profitability and marketability. A larger world production of feed grains from the northern hemisphere is providing strong competition for Argentine sorghum and reducing export demand. (For more information, contact Denise McWilliams, PhD., at 202-720-0107.)

Approved by the World Agricultural Outlook Board

Note: Neither the World Agricultural Supply and Domand Estimates not the World Agricultural Production were published in October 2013 due to a recomment charleson.

- FAS publishes updates on a monthly schedule of Area, Yield, and Production for foreign commodities.
- WAP Release location:
 http://www.fas.usda.gov/wap/current/
- FAS published OMB Principle
 Federal Economic Indicator
- Schedule of release dates for principal Federal Economic indicators for 2013:

http://www.whitehouse.gov/sites/defau lt/files/omb/inforeg/statpolicy/pfeischedule-of-release-dates-2013.pdf

World Agricultural Production: Table 1 of 17

Table 01 World Crop Production Summary

Million Metric Tons

Commodity	World -	Total Foreign		North America		Europea n Union -	Former Soviet				Asia (WAP)			South America			Selected Other		All Others
commonly			United States	Canada	Mexico		Russia	Ukraine	China	India	Indo- nesia	Paki- stan	Thai- land	Argen- tina	Drazil •	Aus- tralia	South Africa	Turkey	
									Millio	on metric to	ns								
Vheat	1																		
2011/12	697.5	643.1	54.4	25.3	3.6	138.4	56.2	22.3	117.4	86.9	nr	25.0	nr	15.5	5.8	29.9	2.0	18.8	95
2012/13 prel.	655.5	593.8	61.7	27.2	3.2	133.6	37.7	15.0	121.0	94.9	nr	23.3	nr	9.5	4.4	22.1	1.9	15.5	83
2013/14 proj.																			
Sep	708.9	651.4	57.5	31.5	3.4	142.9	54.0	22.0	121.0	92.5	nr	24.0	ne	12.0	4.8	25.5	1.8	18.0	96
Nov	706.4	648.4	58.0	33.2	3.4	143.3	51.5	22.0	121.0	92.5	nr	24.0	nr	11.0	4.8	25.5	1.8	18.0	96
oarse Grains	1																		
2011/12	1,151.3	827.6	323.7	22.9	25.7	149.9	33.1	33.5	199.3	42.3	8.9	3.6	4.4	30.1	75.9	12.3	13.3	11.3	16
2012/13 prel.	1,131.1	845.1	286.0	24.3	28.9	145.8	28.7	29.5	212.8	39.9	8.0	3.6	4.7	37.0	83.8	10.1	12.7	10.6	16
2013/14 proj.							_	_			_								
Sep	1,245.5		367.8	25.6	29.5	156.2	35.1		217.5	41.5	9.2	3.6	4.9	36.2	74.8	11.1	13.5	12.9	16
Nov	1,252.4	880.7	371.7	26.2	29.4	150.5	35.6	38.0	217.8	42.0	9.2	3.6	4.9	35.4	72.8	11.0	13.5	13.0	16
ice, Milled																			
2011/12	465.8	459.9	5.9	nr	0.1	2.1	0.7	0.1	140.7	105.3	36.5	6.2	20.5	1.0	7.9	0.7	nr	0.5	13
2012/13 prel.	469.0	462.6	6.3	nr	0.1	2.1	0.7	0.1	143.0	104.4	36.6	5.4	20.2	0.9	8.0	0.8	nr	0.5	13
2013/14 proj.	I	_	82764					_			_			-		_	-		-
Sep	476.8	470.9	5.9	nr.	0.1	2.1	0.7		142.0	108.0	37.7	6.4	21.1	1.0	8.3	0.7	nr	0.5	14
Nov	473.2	467.2	6.0	nr	0.1	2.1	0.6	0.1	141.5	105.0	37.7	6.0	21.1	1.0	8.2	0.7	nr	0.5	14
otal Grains																			
2011/12	2,314.6	1,930.6	384.0	48.2	29.4	290.4	90.0		457.4	234.4	45.4	34.8	24.8	46.6	89.6	42.8	15.3	30.6	391
2012/13 prel.	2,255.5	1,901.5	354.0	51.5	32.2	281.5	67.1	45.4	476.8	239.2	44.6	32.3	24.9	47.5	96.1	33.0	14.6	26.6	381
2013/14 proj.	I	_					_	_			_					_	_		. —
Sep	2,431.2	2,000.0	431.2	57.1	33.0	301.2	89.8		480.5	242.0	46.9	34.0	26.0	49.2	87.9	37.4	15.3	31.4	40
Nov	2,431.9	1,996.2	435.7	59.4	33.0	304.0	87.7	60.1	480.3	239.5	46.9	33.6	26.0	47.3	85.8	37.2	15.3	31.5	40
ilseeds	1101000																		
2011/12	445.6	353.3	92.3	18.9	0.9	29.4	12.4		59.2	36.4	10.2	5.8	0.6	44.8	70.0	5.0	1.3	2.1	4
2012/13 prel.	474.0	380.8	93.1	18.9	1.0	27.7	10.9	12.6	59.6	36.8	10.9	5.1	0.6	53.6	84.5	5.5	1.5	2.1	4
2013/14 proj.	I						_	_			_								
Sep	495.1	402.0	93.2	20.4	0.9	30.6	11.8		58.4	38.6	11.5	5.2	0.6	58.4	91.0	4.8	1.7	2.3	4
Nov	499.4	402.9	96.4	21.0	0.9	30.9	12.8	16.6	58.4	38.1	11.5	5.1	0.6	57.8	91.0	4.8	1.7	2.3	4
otton	- 200																		
2011/12	126.6	111.1	15.6	nr	1.2	1.6	or	nr	34.0	29.0	0.0	10.6	0.0	1.0	8.7	5.5	0.1	3.4	1
2012/13 prel.	123.1	105.8	17.3	nr	1.1	1.5	nr	nr	35.0	28.5	0.0	9.3	0.0	0.8	6.0	4.6	0.0	2.6	1
2013/14 proj.						1	-		1000000							200			1
Sep	117.4	104.5	12.9	thr	0.8	1.4	ne	_	33.0	29.0	0.0		0.0	0.9	7.2	4.5	0.0	2.3	1
Nov	117.2	104.1	13.1	nr	0.8	1.4	nr	nr	32.5	29.0	0.0	9.7	0.0	0.9	7.4	4.5	0.0	2.3	1.5

^{1/} Includes wheat, coarse grains, and rice (milled) shown above.

World Wheat AYP: Table 2 of 17

Table 02 Wheat Area, Yield, and Production

		Area				Yield				Production				Change in Production			
	Country / Region	(Million hectares)			(Metric tons per hectare) Prel. 2013/14 Proj.				(Million metric tons)				- 1		- 1	250000000	
		2011/12	Prel. 2012/13	2013/14 Sep	Proj. Nov	2011/12	Prel. 2012/13	2013/14 Sep	Nov	2011/12	Prel. 2012/13	2013/14 (Sep	Nov	From las	Percent	From la	Percent
	World	221.25	216.06	220.88	219.72	3.15	3.03	3.21	3.21	697.50	655.49	708.89	706,38	-2.52	-0.35	50.88	7.76
	United States	18.50	19.80	18.51	18.27	2.94	3.12	3.11	3.17	54.41	61.67	57.54	57.96	0.43	0.74	-3.71	-6.02
	Total Foreign	202.75	196.26	202.37	201.45	3.17	3.03	3.22	3.22	643.09	593.82	651.36	648.42	-2.94	-0.45	54.59	9.19
1	China	24.27	24.20	24.25	24,25	4.84	5.00	4.99	4.99	117.40	121.00	121.00	121.00	0.00	0.00	0.00	0.00
2	South Asia							111.000									
3	India	29.07	29.86	29.40	29.40	2.99	3.18	3.14	3.14	86.87	94.88	92.46	92.46	0.00	0.00	-2.42	-2.55
4	Pakistan	8.90	8.66	8.67	8.67	2.81	2.69	2.77	2.77	25.00	23.30	24.00	24.00	0.00	0.00	0.70	3.00
5	Afghanistan	2.10	2.51	2.50	2.50	1.19	1.65	1.62	1.62	2.50	4.15	4.05	4.05	0.00	0.00	-0.10	-2.41
6	Former Soviet Union - 12																
7	Russia	24.81	21.30	24.00	23.50	2.27	1.77	2.25	2.19	56.24	37.72	54.00	51.50	-2,50	-4.63	13.78	36.53
8	Ukraine	6.66	5.63	6.50	6.50	3.35	2.80	3.38	3.38	22.32	15.76	22.00	22.00	0.00	0.00	6.24	39.59
9	Kazakhstan	13.69	12.40	12.50	12.50	1.66	0.79	1.36	1.24	22.73	9.84	17.00	15.50	-1.50	-8.82	5.66	57.50
10	Uzbekistan	1.40	1.40	1.40	1.40	4.50	4.79	4.79	4.86	6.30	6.70	6.70	6.80	0.10	1.49	0.10	1.49
11	European Union - 28	25.83	25.96	26.03	25.86	5.36	5.14	5.49	5.54	138.41	133.58	142.90	143.34	0.45	0.31	9.76	7.31
12	France	5.41	5.30	5.40	5.33	6.66	7.15	7.14	7.24	35.99	37.91	38.55	38.60	0.05	0.13	0.69	1.82
13	Germany	3.25	3.06	3.15	3.13	7.01	7.33	7.84	7.96	22.78	22.41	24.70	24.87	0.17	0.67	2.46	10.96
14	United Kingdom	1.97	1.99	1.60	1.62	7.75	6.66	7.56	7.47	15.26	13.26	12.10	12.10	0.00	0.00	-1.16	-8.75
15	Poland	2.26	2.08	2.23	2.15	4.13	4.14	4.22	4.37	9.34	8.61	9,40	9,40	0.00	0.00	0.79	9.20
16	Spain	1.99	2.17	2.21	2.15	3.46	2.35	3.49	3.59	6.90	5.09	7.70	7.70	0.00	0.00	2.61	51.19
17	Italy	1.62	1.87	1.82	1.82	3.98	4.09	3.92	3.92	6.45	7.63	7.13	7.13	0.00	0.00	-0.50	-6.55
18	Denmark	0.74	0.61	0.70	0.68	6.81	6.92	7.14	6.81	5.06	4.23	5.00	4.60	-0.40	-8.00	0.37	8.80
19	Hungary	0.98	1.06	1.10	1.09	4.20	3.74	4.55	4.68	4.11	3.97	5.00	5.10	0.10	2.00	1.13	28.40
20	Romania	1.95	1.99	2.05	2.05	3.65	2.66	3.61	3.61	7.10	5.30	7,40	7,40	0.00	0.00	2.10	39.62
21	Bulgaria	1.14	1.19	1.14	1.19	3.92	3.76	4.17	4.05	4.46	4.46	4.75	4.83	0.08	1.58	0.37	8.31
22	Canada	8.55	9.50	10.50	10.28	2.96	2.86	3.00	3.23	25.29	27.21	31.50	33.20	1.70	5.40	6.00	22.04
23	Australia	13.90	13.24	13.70	13.70	2.15	1.67	1.86	1.86	29.91	22.08	25.50	25.50	0.00	0.00	3.42	15.49
24	Middle East																
25	Turkey	7.70	7.80	7.70	7.70	2.44	1.99	2.34	2.34	18.80	15.50	18.00	18.00	0.00	0.00	2.50	16.13
26	Iran	6.80	7.00	7.00	7.00	1.99	2.00	2.07	2.07	13.50	14.00	14.50	14.50	0.00	0.00	0.50	3.57
27	Syria	1.60	1.60	1.55	1.55	2.41	2.31	2.71	2.71	3.85	3.70	4.20	4.20	0.00	0.00	0.50	13.51
28	North Africa							#1000000									
29	Egypt	1.28	1.35	1.40	1.40	6.56	6.30	6.29	6.29	8.40	8.50	8.80	8.80	0.00	0.00	0.30	3.53
30	Morocco	3.04	3.14	3.28	3.28	1.91	1.23	2.13	2.13	5.80	3.87	7.00	7.00	0.00	0.00	3.13	80.88
31	Argentina	5.17	3.60	3.90	3.70	3.00	2.64	3.08	2.97	15.50	9.50	12.00	11.00	-1.00	-8.33	1.50	15.79
many	Others	17.99	17.10	18.10	18.27	2.46	2.49	2.53	2.49	44.27	42.54	45.75	45.56	-0.19	-0.41	3.03	7.12

World and Selected Countries and Regions

World Agricultural Supply and Demand Estimates

Department of Agriculture Agriculture and Demand Estimates

ISSN: 1554-9089

Office of the Chief Economist Agricultural Marketing Service Farm Service Agency Economic Research Service Foreign Agricultural Service

WASDE - 523

Approved by the World Agricultural Outlook Board

November 8, 2013

Note: The World Agricultural Supply and Demand Estimates (WASDE) report was not published in October 2013 due to the Federal Government shutdown.

WHEAT: Projected U.S. wheat supplies for 2013/14 are raised 26 million bushels with higher estimated production and an increase in expected imports. Production was raised 14 million bushels in the September 30 Small Grains report. Production is further raised 2 million bushels for Hard Red Spring (HRS) wheat and slightly for Durum based on the resurvey of North Dakota and Montana producers who had not finished harvesting when the September survey was completed for the Small Grains report. Imports are projected 10 million bushels higher with larger supplies in Canada and stronger food use expected for HRS wheat. Food use for all wheat, however, is lowered 8 million bushels reflecting the latest flour production data reported by the North American Millers' Association with Hard Red Winter wheat food use reduced. Feed and residual use is projected 30 million bushels higher based on indicated June-August disappearance from the September 1 stocks. Projected ending stocks are raised 4 million bushels.

The projected range for the 2013/14 season-average wheat farm price is narrowed 20 cents on each end to \$6.70 to \$7.30 per bushel. The midpoint of the range is unchanged from September at \$7.00 per bushel. Normally 60 percent or more of each year's crop is marketed from June through October and reported farm prices so far for this marketing year have averaged near \$7.00 per bushel.

Global 2013/14 wheat supplies are lowered 0.8 million tons as a decline in global output more than offsets higher beginning stocks, mostly in the European Union. European Union production for 2012/13 is revised higher and domestic consumption is estimated lower boosting 2013/14 beginning stocks. European Union production for 2013/14 is raised 0.4 million tons with small increases to reported crops in a number of member countries. Canada production is raised 1.7 million tons in line with official estimates. Global production, however, declines 2.6 million tons with production lowered 2.5 million tons for Russia, 1.5 million tons for Kazakhstan, and 1.0 million tons for Argentina. Reductions for Russia and Kazakhstan reflect late-season harvest reports for spring wheat. The reduction for Argentina is based on lower expected harvested area as dryness and late-season freeze events reduce prospects for a crop which will be harvested over the coming weeks.

Global wheat consumption for 2013/14 is lowered 3.0 million tons with reductions in foreign feed and food use projected this month. Feed use is lowered for China, Russia, and the European Union, more than offsetting a small increase for South Korea. Food use is lowered for India, Russia, and the European Union. Global wheat trade, in the aggregate, is mostly unchanged this month with imports raised for several African countries and Mexico, but lowered for China, the European Union, and the Philippines. World exports decline slightly as reductions for Argentina, Kazakhstan, and Russia more than offset increases for Canada, the European Union, and India. World wheat stocks are projected 2.2 million tons higher with the biggest increases for the European Union, Canada, and Argentina.

COARSE GRAINS: Projected U.S. feed grain supplies for 2013/14 are raised with higher estimated beginning stocks and increases in corn and sorghum production with the November *Crop Production* report. Corn production is forecast 146 million bushels higher at a record 13,989 million bushels. A 1.9-million-acre reduction in harvested area is more than offset by a 5.1-bushel-per-acre increase in the forecast yield. At 160.4 bushels per acre, the national average yield remains 4.3 bushels per acre

- USDA World
 Agricultural Outlook
 Board publishes
 updates on a monthly
 schedule.
- Supply (Production)
 and Demand for
 major world
 commodities.
- WASDE Release location:

http://www.usda.gov/oce/commodity/wasde/latest.pdf

International AYP: FAS

WASDE-523-8: World and U.S. Supply and Use for Grains

November 2013

WASDE - 523 - 8

World and U.S Supply and Use for Grains 1/

			Million Me	etric Tons			
World			Output	Total Supply	Trade 2/	Total Use 3/	Endin Stock
Total Grains 4/	2011/12		2314.58	2778.25	343.51	2309.15	469.1
Total Otalia 4	2012/13 (Est.)		2255.54	2724.64	295.64	2278.03	446.6
	2013/14 (Proj.)	Sen	2431.20	2861.05	326.76	2393.97	467.0
	2013/14(110).)	Nov	2431.92	2878.53	333.88	2395.90	482.6
Wheat	2011/12		697.50	896.48	157.78	697.11	199.3
	2012/13 (Est.)		655.49	854.87	138.32	679.28	175.5
	2013/14 (Proj.)	Sep	708.89	882.75	154.52	706.47	176.2
		Nov	706.38	881.96	153.72	703.49	178.4
Coarse Grains 5/	2011/12		1151.28	1317.37	146.66	1152.15	165.2
	2012/13 (Est.)		1131.08	1296.30	118.46	1131.73	164.5
	2013/14 (Proj.)	Sep	1245.54	1396.36	133.11	1212.95	183.4
		Nov	1252.37	1416.94	140.90	1219.31	197.6
Rice, milled	2011/12	75-550	465.80	564.40	39.07	459.89	104.5
	2012/13 (Est.)		468.96	573.48	38.85	467.03	106.4
	2013/14 (Proj.)	Sep	476.77	581.94	39.13	474.55	107.3
		Nov	473.18	579.62	39.26	473.10	106.5
Total Grains 4/	2011/12		384.01	447.82	72.83	325.65	49.3
	2012/13 (Est.)		354.01	414.06	51.55	318.23	44.2
	2013/14 (Proj.)	Sep	431.18	478.83	68.51	343.73	66.5
		Nov	435.69	487.76	73.51	346.84	67.4
Wheat	2011/12		54.41	80.93	28.61	32.11	20.2
	2012/13 (Est.)		61.67	85.22	27.42	38.27	19.5
	2013/14 (Proj.)	Sep	57.54	80.90	29.94	35.68	15.2
		Nov	57.96	81.58	29.94	36.28	15.3
Coarse Grains 5/	2011/12		323.73	358.89	41.03	290.05	27.8
	2012/13 (Est.)		286.01	320.53	20.73	276.21	23.5
	2013/14 (Proj.)		367.75	390.17	35.45	304.37	50.3
		Nov	371.72	398.31	40.39	306.88	51.0
Rice, milled	2011/12		5.87	8.00	3.20	3.49	1.3
	2012/13 (Est.)		6.33	8.31	3.40	3.75	1.1
	2013/14 (Proj.)		5.90	7.77	3.12	3.69	0.9
		Nov	6.01	7.87	3.19	3.69	0.9

^{1/} Aggregate of local marketing years. 2/ Based on export estimate. See individual commodity tables for treatment of export/import imbalances. 3/ Total use for the United States is equal to domestic consumption only (excludes exports). 4/ Wheat, coarse grains, and milled rice. 5/ Corn, sorgham, barley, oats, rye, millet, and mixed grains (for U.S. excludes

Balance Sheet

- Output
- Supply
- Trade
- Use
- Stocks

Production is essential component of Output, Supply and Estimating World Trade forecasts

FAS: "Production Supply Distribution" Database (PSD Online)

Country / Strates	Anna (William Instituted				Wald (Walds have be became)				Production (Hillian matrix form)					Inampe in F	reduction.	
Catholic I. goldens		Post	2012 Strip Prop.			MrsJ.	2003/144			Park	2012/14 Proj.		From last more.		Feebeck	
	1261/31	264.613	344	No.	251/12	1911/15	340	701	283/15	2014/13	540	No	1897	Notes	1681	RICKT.
World	231-28	28.86	226.68	189.70	2.62	3.60	0.21	3.26	687.50	400.49	100.00	794.0	-0.80	-0.30	11.14	1.5
Joshed Hales	35.50	19.80	26.5%	8.25	2.84	1/27	1.11	3.05	394.60	41.82	27,04	27.79	8.40	0.74	-0.71	4.0
Total Foreign	30.79	198.36	301.10	20140	3.17	3.63	1.21	3.20	943.06	HELICI	451.30	HALK	0.86	-0.40	34.38	6.2
Dine	34.27	24.50	3420	34.28	1.50	5.00	6.24	4.00	10.60	12149	121.00	121.00	1.00	0.00	5.00	0.0
South Inde				12.1												
India	26.07	29.46	25.40	25.00	0.89	3.48	0.44	3.00	196,27	94.00	61.46	11.4	6.50	9-86	9.46	1.0
fallows	1.40	0.46	8.67	8.40	2.86	1.09	1.77	3.75	26.60	23.70	24.00	24.00	8.00	0.00	8.79	3-9
Alghanistan	2.10	2.89	3.59	3.56	1-19	1405	1.65	1.69	2.60	4.00	4.6%	4.00	9.00	2.00	9.16	14
Formac Societ Street : 58																
Auralia	24.84	24.36	24.10	33.98	3.20	4.70	2.24	2.18	100.24	\$1.79	84.00	31.00	9.80	140	0.76	14.4
Gireire.	5.56	540	6.59	6.59	11.16	5.00	1.84	3.00	20.48	15.76	45.00	21.49	0.00	-	6.44	10.5
18(9) (59)	21.66	10.46	10.59	35.56	1.48	5.79	1.09	149	20.79	100	47.60	15.79	1.80	-8.80	5.66	20.5
Otherwo.	1.40	1.40	1.49	146	1.50	4.79	14.79	4.09	6.00	6.79	4.79	4.00	9.16	1.49	8.46	1.4
Burngean Brown - df	2.87	125.69	29.60	23.09	5.09	209	5.49	5.5%	239.40	159.00	143.00	143.04	8.45	0.00	5.79	
THE	5.40	5.00	3.46	3.00	6.44	2/05	1104	7.09	161.00	\$1.90	36.55	34.68	0.06	0.13	3.46	1.4
SETTING.	1125	7.54	915	311	1.66	5.00	1184	1.79	00.79	1141	\$4.79	54.05	847	941	0.46	159
Under Kingdom	1.81	1.09	1.66	140	2.77	9.49	11.54	1.46	120.09	11/29	12.19	1519	5.00	1.00	-0.16	4.7
Roland	2.28	2.69	1.10	3.15	11.5	4.34	4.22	4.05	9.54	640	3.40	5.49	1.00	0.00	8.79	9.3
204	1.79	2.47	2.05	3.15	3.46	1.09	2.48	3.78	6.00	3.09	2.79	2.79	1.00	1.00	2.64	20.0
Sen	1.60	1.87	1.80	-3.80	3.98	4.09	3180	3.80	5.40	7,63	7,128	3.0	1.00	0.00	-9.50	4.2
Denneric	9.79	15.61	9.79	1.40	6.00	6.60	1.44	6.80	5.06	4.21	3.69	4.60	4.40	-9.00	8.27	1.0
Hangery	3.96	1.09	1.18	1.00	4.00	3.74	4.21	4.60	9.11	1.00	3.404	5.0	8.10	0.00	1.11	22.4
Remorks	1.90	1.79	3.86	3.88	3.60	3.66	241	3.60	7.80	3.39	7.49	3.48	6.50	0.00	2.10	38-6
Brigaria	1.48	1.11	1.16	3.18	0.80	3.76	6.47	4.00	4.60	4.40	4.79	4.03	0.00	1.80	8.07	8.3
Canada	1.70	9.30	28.50	36.28	2.86	3.06	3:00	3.29	29.28	27.20	11.36	13.28	1.79	1.40	11.09	
Rosinalia	(0.86)	10.24	63.79	13.79	2.48	1.67	1.00	1.86	28.86	21.69	21.59	21.9	6.00	0.00	- 3/	
Middle Cost															4	
Turkey	2.79	7.80	2.76	2.79	2.46	1,49	2.34	2.36	18.80	13.79	25.60	25.00	0.00	5.00	2.86	_
Pan .	5.60	7.86	7.80	3.86	1.86	3.69	247	2.85	10.50	14.69	14.70	14.70	9.50	0.00	1.10	2.0
Spring Married	1.40	1.60	1.56	1.56	2.66	1.h	9.74	2.79	5.88	1.9	4.38	4.26	1.50		4.50	15.8
Approx.	1.26	1.05	1.00	1.00	6.86	4.00	6.09	6.09	1.00	8.00	4.00	4.00	1.00		4.00	1.4
March .	1.00	0.04	1.00	1.0	1.81	1.00	1:11	0.00	1.60	142	3.66	7.00	1.00	-		-
Angustina	542	2.40	3.46	1.3	3.60	3.04	144	2.60	15.50	1.01	13.69	11.00	- 10	- 10	- 11	18.70
Mari	10.86	10.46	10.10	99.10	1.44	1.00	2:51	0.00	m.11	41.94	41.79	41.79	0.75	444		

World and Delected Coordinate and Regions

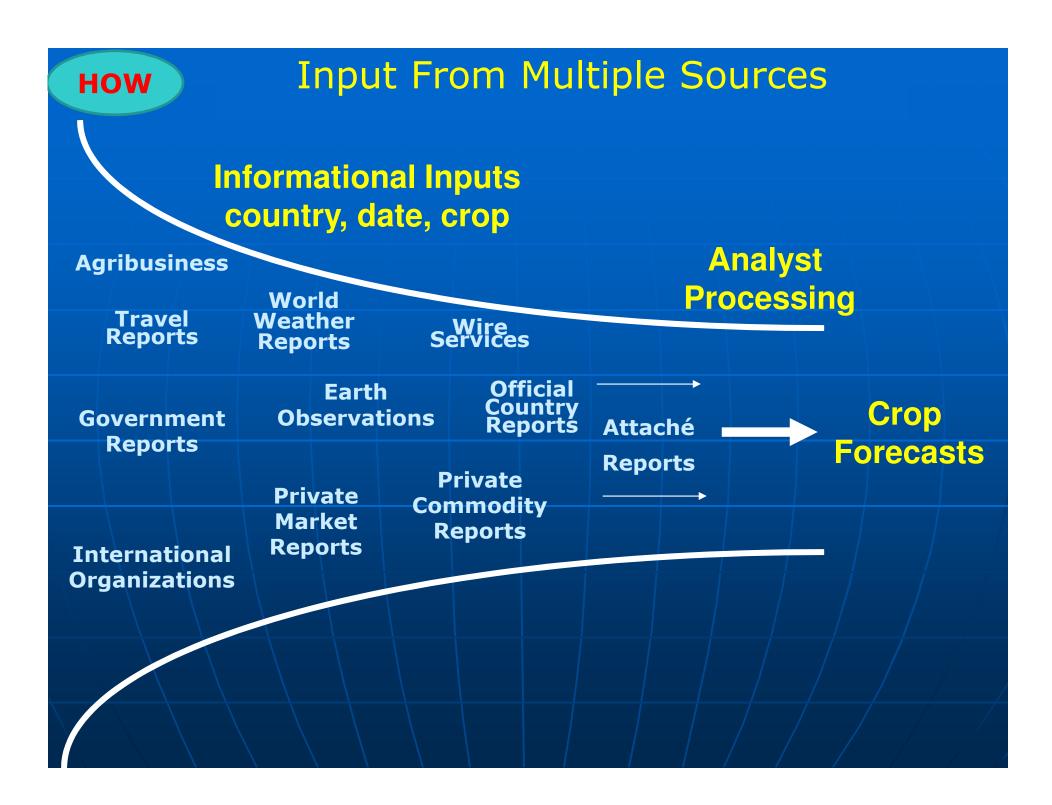
Transign, Agriculturae Seovicent, 1 Office of Gester, Analysis November 2

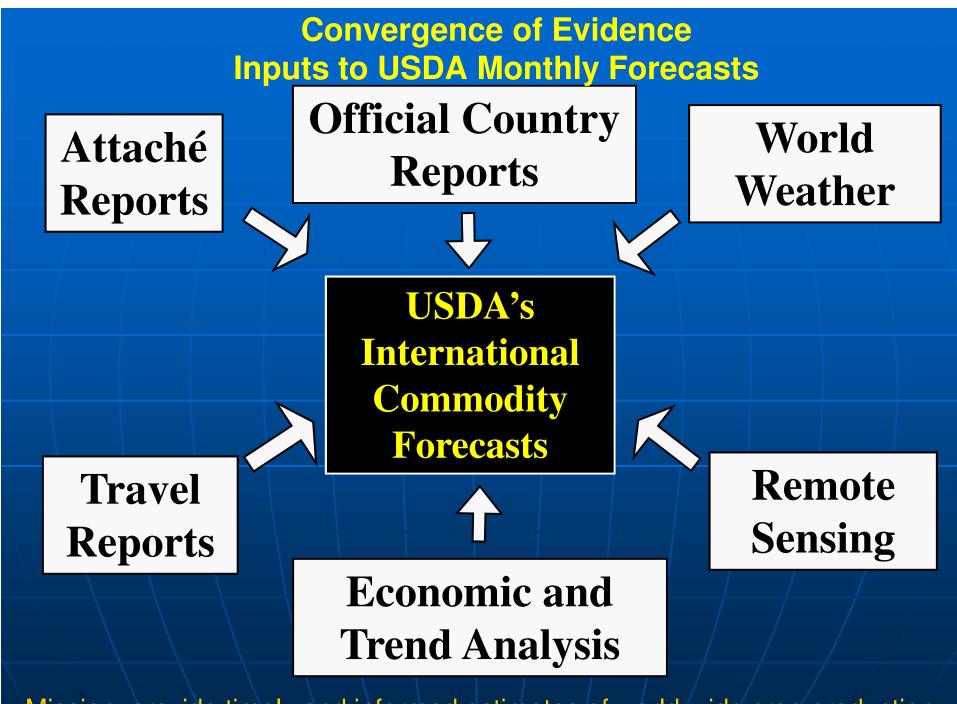
			WASDE	- 523 - 8		,	
		World	and U.S Supply Million M		Greins 1/		(
World			Output	Total Supply	Trade 2	Total Use 3	Ending Stocks
Total Gesian 4	2011/12 2012/13 (Bot.)		2914.58 2255.54	2778.25 2724.64	343.51 295.64	2309.15 2278.03	469.10 446.61
	3013/14 (Proj.)	Sep Nev	2431.20 2431.92	2861.05 2878.53	336.76 333.88	2393.97 2395.90	482.67
Wheat	2011/12 2012/13 (Ext.)		697.50 655.49	896.48 854.87	157.78 138.32	697.11 679.28	199.37
	2013/14 (Proj.)	Sep Nev	708.89 706.38	882.75 881.96	154.52 159.72	706.47 709.49	176.26
Course Ornion 5/	2011/12 2012/13 (Ent.)		1151.28 1131.08	1317.37 1296.30	146.66 118.46	1152.15 1131.79	165.22
	2013/14 (Proj.)	Sep Nev	1245.54 1252.57	1396.36 1416.94	133.11 140.90	1212.99 1219.31	197.63
Rice, milled	2011/12 2012/13 (Birt.)		465.90 469.96	564.40 573.48	39.07 38.85	459.89 467.03	106.44
	3013/14 (Proj.)	Sep Nev	476.77 473.18	581,94 579,62	39.13 39.26	474.55 479.30	107.36
United States							
Total Grains 4	2015/12 2012/13 (Ew.)		384.01 354.01	447.82 454.96	72.89 51.55	325.65 318.29	49.34 44.29
	2013/14 (Proj.)	Sep Nov	431.18 435.69	478.83 487.76	68.51 73.51	343.73 346.84	67.40
Wheat	2011/12 2012/13 (Ext.)		34.41 61.67	80.99 85.22	28.60 27.42	32.31 38.27	20.21 19.34
	2013/14 (Proj.)	Sep Nov	57.54 57.96	80.90 81.38	29.94 29.94	35.66 36.28	15.37
Coarse Grains 5/	2011/12 2012/17 (Ext.)		323.73 286.01	338.89 330.53	41.09 30.73	290.05 276.21	27.80 23.56
	2013/14 (Proj.)	Sep Nov	367.75 371.72	390.17 398.31	35.45 40.39	304.37 306.88	50.36 51.04
Rice, milled	2011/12 2012/13 (Ew.)		5.87 6.33	8.00 8.31	3.20 3.40	3.49	1.10
	2013/14 (Proj.)	Sep Nov	5.90 6.01	7.37 7.87	3.12 3.19	3.69	0.96

1/ Aggregate of local marketing years. 2/ Based on export estimate. See individual commodity tables for treatment of export impalances. 3/ Total use for the United States is equal to domestic communities only (excludes exports).

4 Whest course grains, and milled rice. 3 Corn, couplings, burley, outs, eye, millet, and mixed grains (for U.S. exchat

- AYP and Balance Sheet Data Input to the PSD system
- Public Facing Database
- Extraction for AYP and Trade Data
- Transparent USDA Market Information


Convergence of Evidence

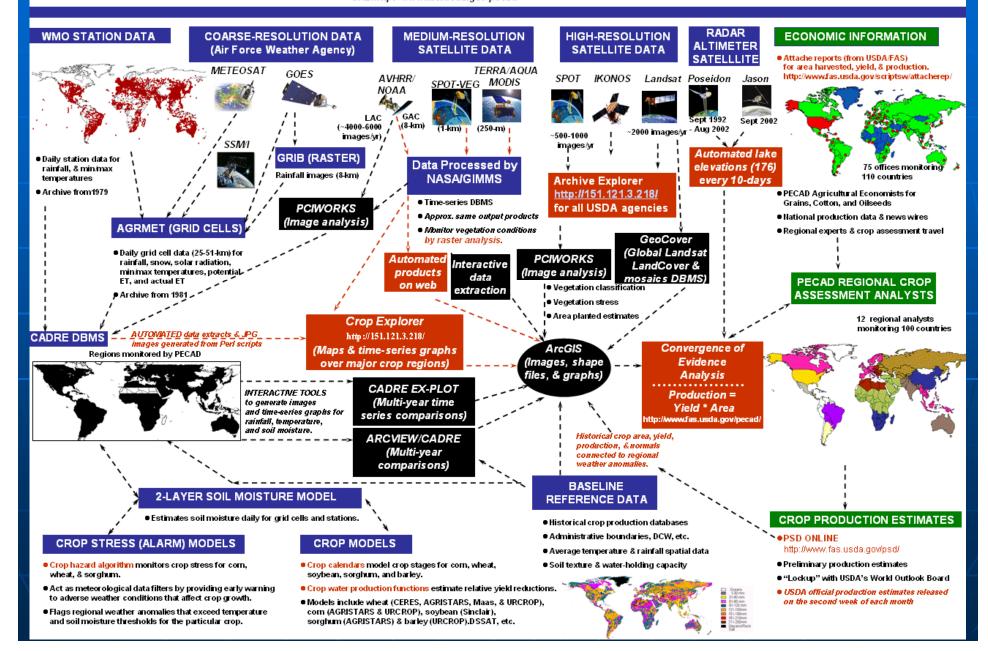

IPADs final production estimate, produced by the 10th day of each month and cleared by the World Agricultural Outlook Board, is based on an all source convergence of evidence methodology.

USDA's
International
Commodity
Forecasts

The final production estimates are used in a variety of ways including

Official USDA statistics
Principal federal economic indicators
Crop conditions and early warning alerts
Agricultural monitoring and food security
Foreign aid assessments for food import needs
Disaster monitoring and relief efforts related to food aid
Commercial market trends and analysis
Trade policy and exporter assistance

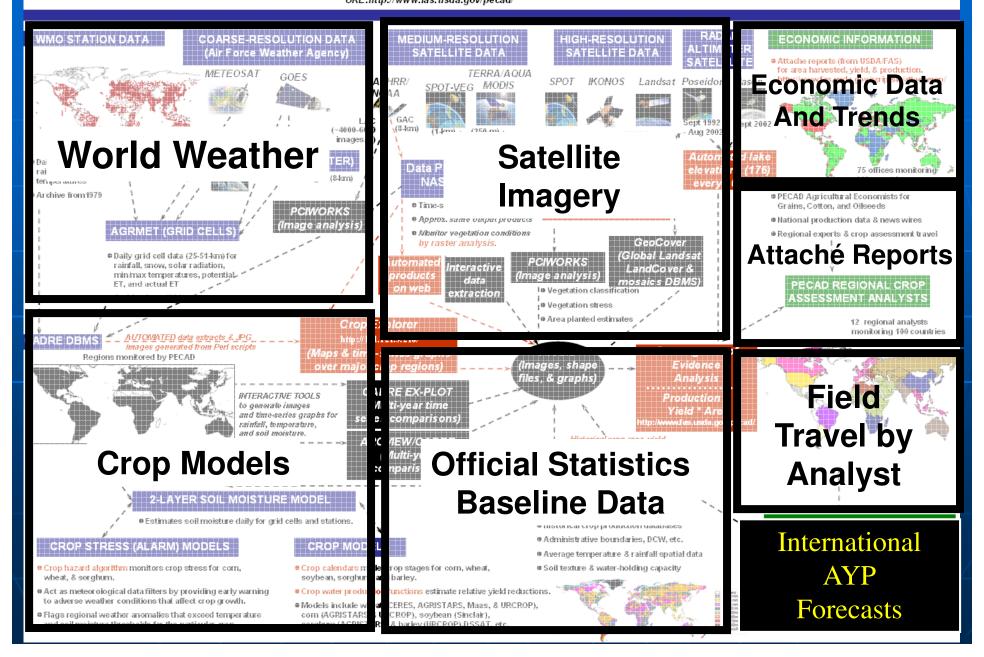
Mission: provide timely and informed estimates of world-wide crop production.


Global Data Sources for Estimating Crop Production

Production Estimates and Crop Assessment Division (PECAD)

USDA/FAS/PECAD, USDA South Building, MS-1045, 1400 Independence Ave., SW, Washington DC, 20250

URL:http://www.fas.usda.gov/pecad/


Global Data Sources for Estimating Crop Production

Production Estimates and Crop Assessment Division (PECAD)

USDA/FAS/PECAD, USDA South Building, MS-1045, 1400 Independence Ave., SW, Washington DC, 20250

URL:http://www.fas.usda.gov/pecad/

Inputs to USDA Monthly Forecasts

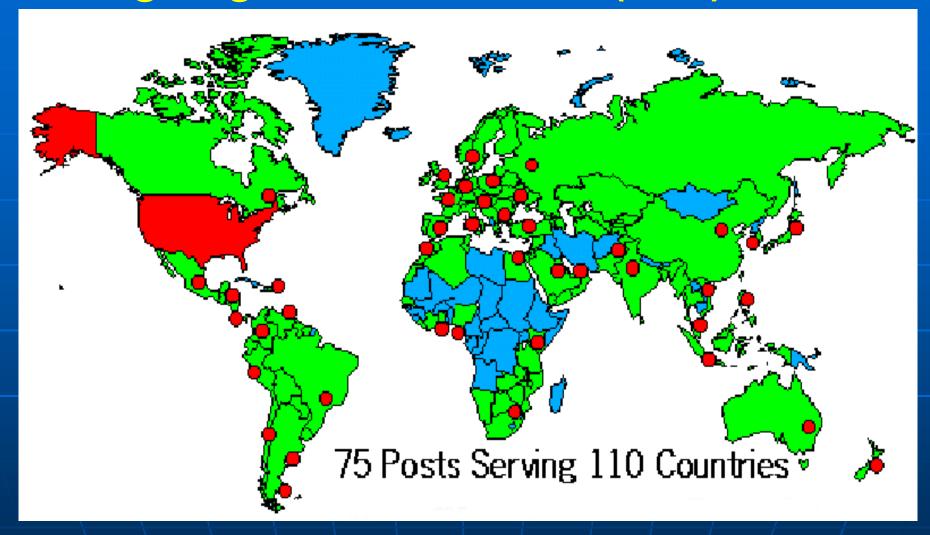
Attaché Reports Official Country Reports

World Weather

Ţ

USDA's
International
Commodity
Forecasts

Travel Reports



Economic and Trend Analysis

Remote Sensing

Mission: provide timely and informed estimates of world-wide crop production.

Foreign Agricultural Service (FAS) of USDA

FAS Overseas staff, collect data, statistics, crop progress, and agricultural market information

FAS: Global Agricultural Information Network

Global Agricultural Information Network Online

GAIN Home

Help

Contact Us

GAIN Reports

- Search Reports
- View All Reports
 Legacy Reports(Prior to 07/03/2009)

External Links

- PSD Online
- □ GATS

FAS Home > GAIN Home > Published GAIN Reports

Published GAIN Reports

These reports are in PDF format and you will need Adobe Reader in order to view or print these files. The download is free at http://www.adobe.com/products/reader

Mouse-over the Column Names in the table below to sort or filter the details

Name	Created
Product Brief - Distilled Spirits_Warsaw_Poland_11-12-2013	11/15/2013 2:56 PM
Coffee Semi-annual_Sao Paulo ATO_Brazil_11-12-2013	11/15/2013 2:56 PM
Fresh Deciduous Fruit Annual_Ottawa_Canada_11-12-2013	11/15/2013 2:56 PM
In-Store Promotion - Capital Hypermarket 2013_Bangkok_Thailand_11-6-2013	11/15/2013 2:56 PM
Fresh Fruit and Vegetable Prices Escalate in Jordan_Amman_Jordan_11-6-2013	11/13/2013 2:56 PM
Rice Production and Trade Update_Santo Domingo_Haiti_11-7-2013	11/13/2013 2:56 PM
US Sorghum Exports to Show Success of USDA Marketing Programs_Beijing_China - Peoples Republic of_11-8-2013	11/13/2013 2:56 PM
Health Claims - New EU Regulation on Generic Descriptors_Brussels USEU_EU-27_11-6-2013	11/13/2013 2:56 PM
Macao Food Safety Center Established_Hong Kong_Hong Kong_11-8-2013	11/13/2013 2:56 PM
Macao's Regulation on Veterinary Drug Residue in Food_Hong Kong_Hong Kong_11-8-2013	11/13/2013 2:56 PM
Human H7N9 Case Confirmed in HK's "Backyard"_Hong Kong_Hong Kong_11-7-2013	11/13/2013 2:56 PM
Food Safety Law Draft for Comment _Beijing_China - Peoples Republic of_11-8-2013	11/13/2013 2:56 PM
Mesopotamian Minute - October 2013_Cairo_Iraq_11-7-2013	11/12/2013 2:57 PM
Sugar Semi-annual_Santo Domingo_Dominican Republic_10-1-2013	11/12/2013 2:56 PM
Ukrainian Agrarians are in Favor of Production of GE Crops _Kiev_Ukraine_11-6-2013	11/12/2013 2:56 PM
Proposed Changes to the Thai Food Labeling Law_Bangkok_Thailand_11-7-2013	11/12/2013 2:56 PM
Ukraine Introduces New Poultry Meat Requirements_Kiev_Ukraine_11-6-2013	11/12/2013 2:56 PM
Dainy and Dradusta Appual, Cook ATO, Karon, Depublic of 10, 21, 2012	11/12/2012 2:EE DM

FAS: Global Agricultural Information Network

THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. GOVERNMENT POLICY

Date: 11/18/2013

Voluntary Public

GAIN Report Number: RS1383

Russian Federation

Post: Moscow

Russian Agricultural Policy and Situation Bi-Weekly Update - 5

Report Categories:

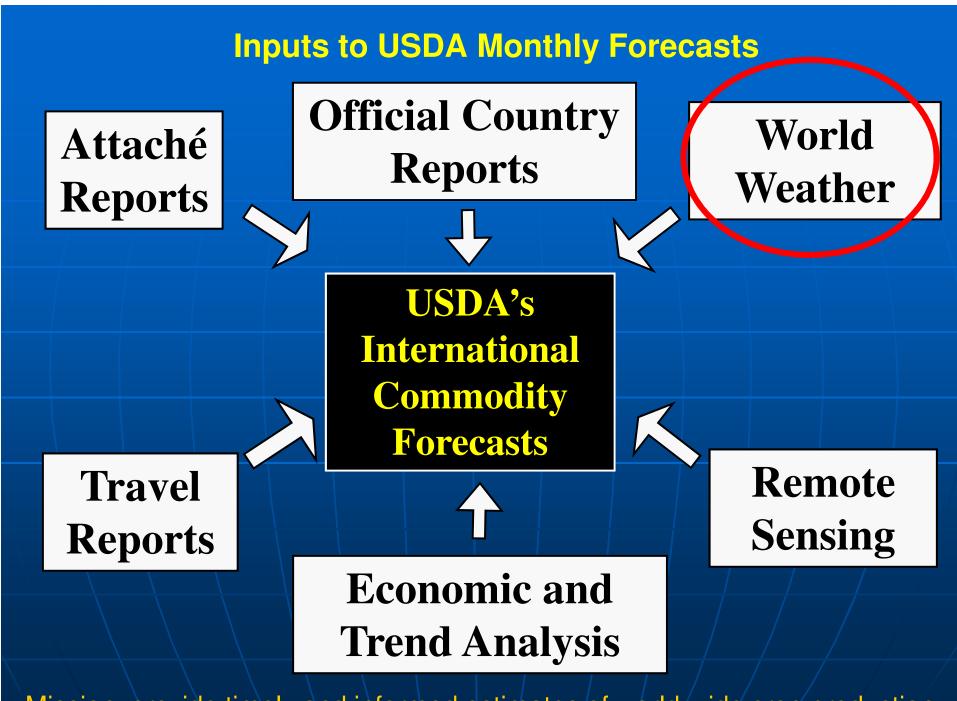
Agriculture in the News

Approved By:

Levin Flake

Prepared By:

FAS Moscow Staff


Report Highlights:

Russia and EU discuss potato ban...Ministry of Agriculture begins domestic food aid pilot projects...The Minister of Agriculture discusses WTO impact and Russia's self sufficiency goals...And also discusses milk subsidies...A new lysine facility to supply Russian feed manufacturers...Illegal black caviar seized in Vladivostok

General Information:

Welcome to the Russian Agricultural Policy and Situation Bi-Weekly Update, a summary of issues of interest to the U. S. agricultural community. The report includes information that has been garnered during travel within Russia, reported in the local media, or offered by host country officials and agricultural analysts. Press articles are included and summarized in this report. Significant issues will be expanded upon in subsequent reports from this office. Minor grammatical changes have been made for clarification.

FAS Overseas staff, collect data, statistics, crop progress, and agricultural market information

Mission: provide timely and informed estimates of world-wide crop production.

Inputs to USDA Monthly Forecasts

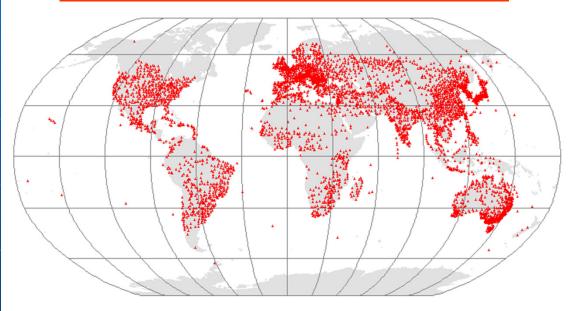
World Weather

Weather Data Sources

- World Meteorological Organization (WMO)
- US Air Force Weather Agency (AFWA)
- Experimental products from NASA

World Meteorological Organization (WMO)

Daily Data Loaded Next Day:


- 24-hour precipitation
- Max Temp
- Min Temp
- Snow Coverage

IPAD Updates Assessment Database:

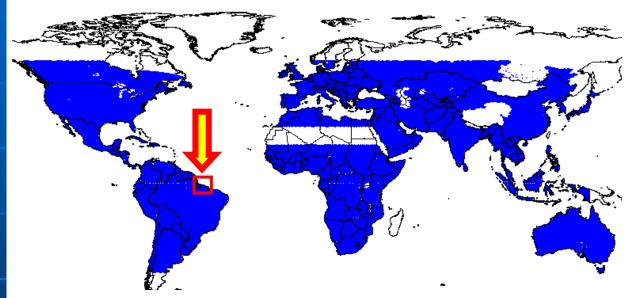
- Average Daily Temperature
- Cumulative precipitation
- Potential ET
- Soil Moisture
- Crop Calendar
- Corn Hazard (Alarm)
- Winterkill Model

Weather Station Observations: Daily Data

"Yesterday's Weather Delivered Today"

Daily weather data provided by approximately 7000 WMO ground stations

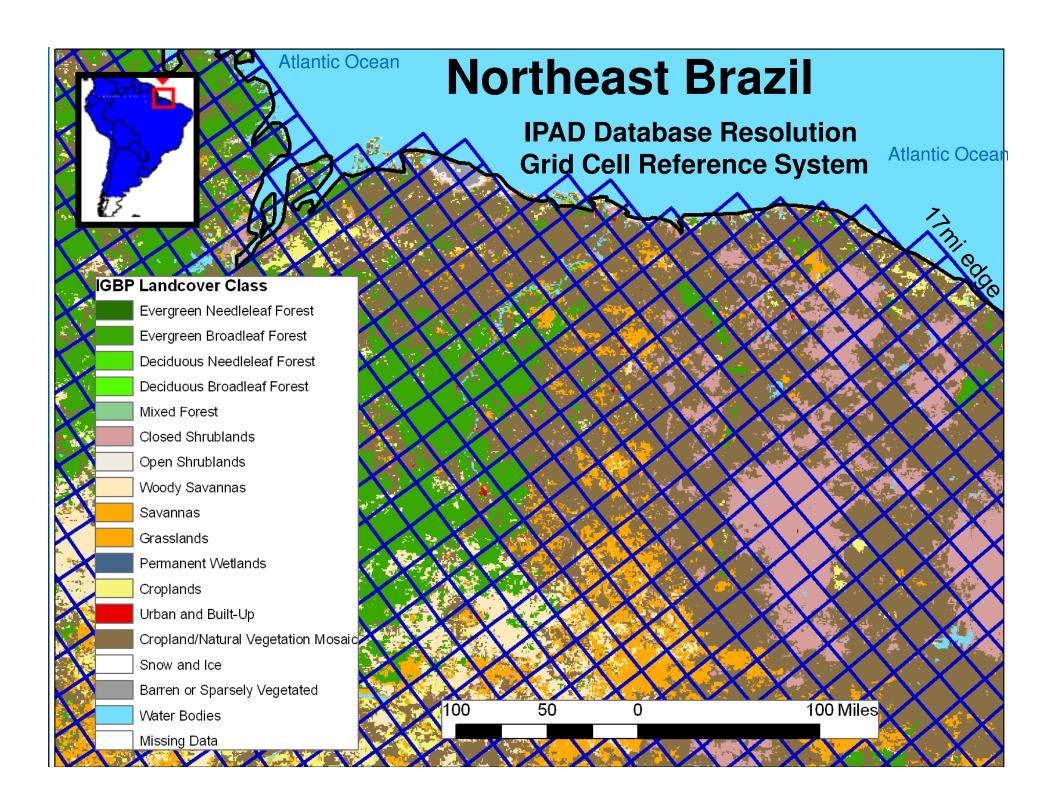
Air Force Weather Data (AFWA)

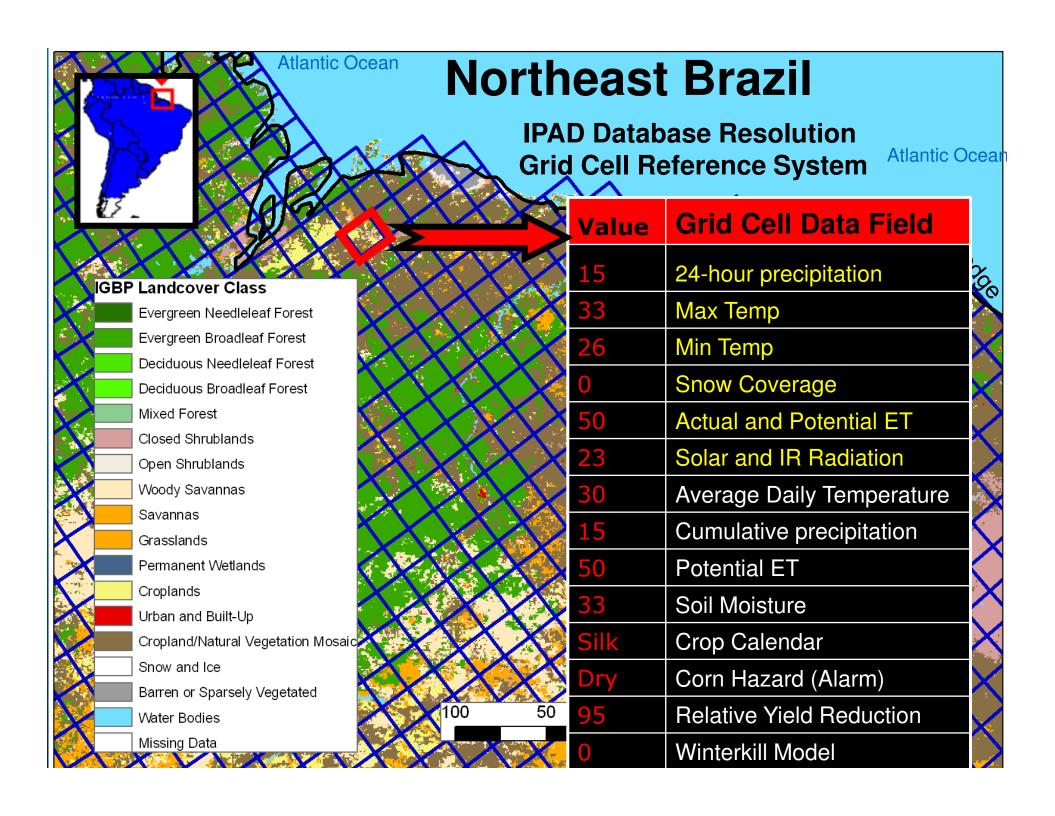

Daily AFWA Data Loaded Next Day:

- 24-hour precipitation
- Max Temp
- Min Temp
- Snow Coverage
- Actual and Potential ET
- Solar and IR Radiation

IPAD Updates Assessment Database:

- Average Daily Temperature
- Cumulative precipitation
- Potential ET
- Soil Moisture
- Crop Calendar
- Corn Hazard (Alarm)
- Relative Yield Reduction
- Winterkill Model


Spatial Coverage of AFWA Weather Data



Daily Modeled Weather Data for 85,000 Locations (Grid Cells)

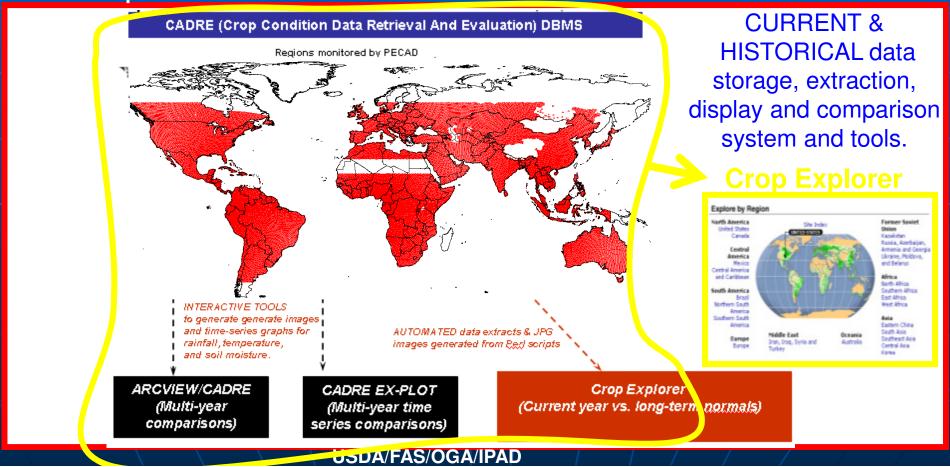
IPAD database / Baseline CADRE

baseline geo-spatial data sets:

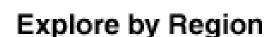
- Climate 30-year normals
 & NDVI multi-year
 averages
- Soils water holding capacity
- Average crop planting dates

Major Agricultural Regions Crop Intensity 1% 191% 21% - 20% -1% - 100%

BASELINE REFERENCE DATA


- Historical crop production databases (national and provincial level)
- Administrative boundaries
- Rainfall & temp long-term averages for stations (from WMO/NOAA)
- Rainfall & temperature long-term averages for grid cells (from IIASA climate maps)
- Crop information such as crop type, start of season, avg. yields, etc.
- Soil water-holding capacity (from FAO DSMW)

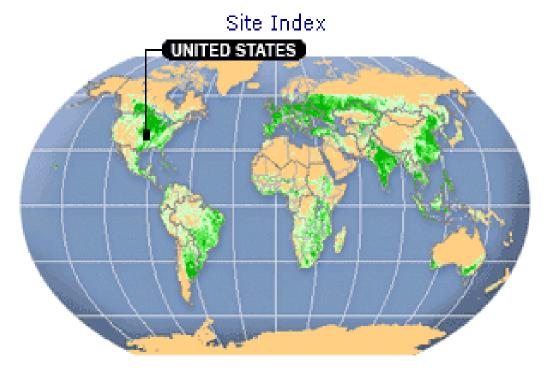
11/29/2013


Crop Assessment Database System

- Automatic: "Crop Explorer" products are displayed on the Internet every 10-days and for summer/winter growing seasons
- <u>Interactive</u>: Arcview GIS extractions for any region and time period.

CADRE to CROP EXPLORER DISPLAY Foreign Agricultural Service FAS to the World

Crop Explorer



North America United States Canada

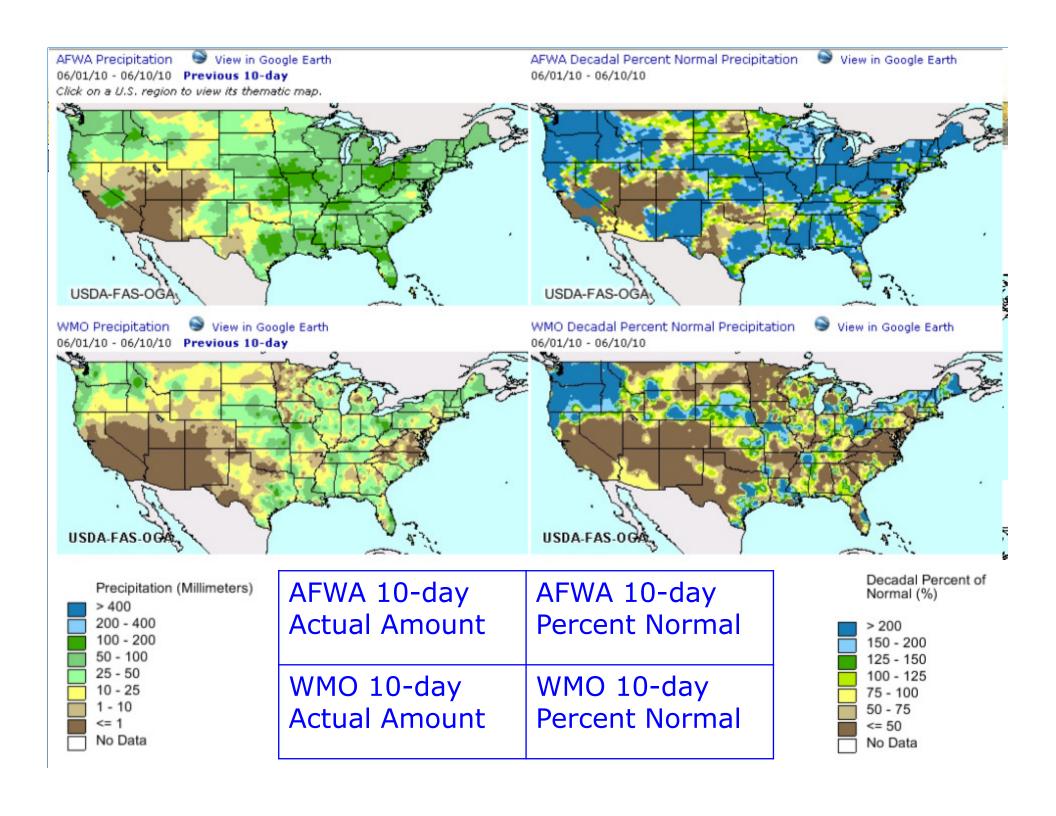
Central America Mexico Central America and Caribbean

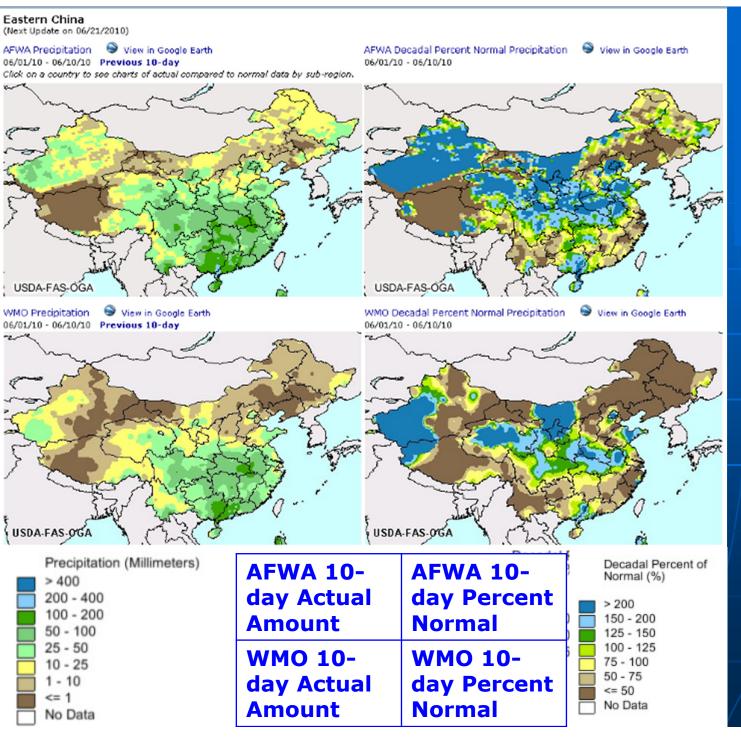
South America Brazil Northern South America Southern South America

> Europe Europe

Middle East Iran, Iraq, Syria and Turkey Oceania Australia

Former Soviet Union


Kazakstan Russia, Azerbaijan, Armenia and Georgia Ukraine, Moldova, and Belarus


Africa

North Africa Southern Africa East Africa West Africa

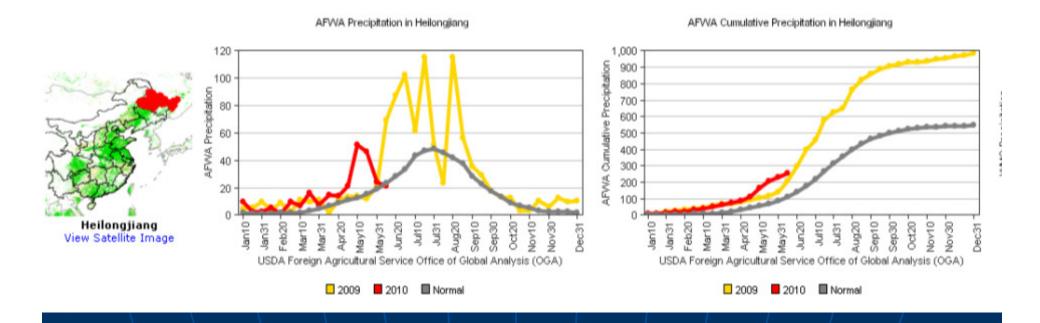
Asia

Eastern China South Asia Southeast Asia Central Asia Korea

Crop Explorer: Eastern China

Two clicks: 10 day precipitation analysis over major growing regions. Two data sources. **Actual and Percent Normal** Results. Click once more for chart transformation.

Eastern China


2010 Calendar Year (Jan - Dec)

China

(Last Chart Update - 06/10/10)

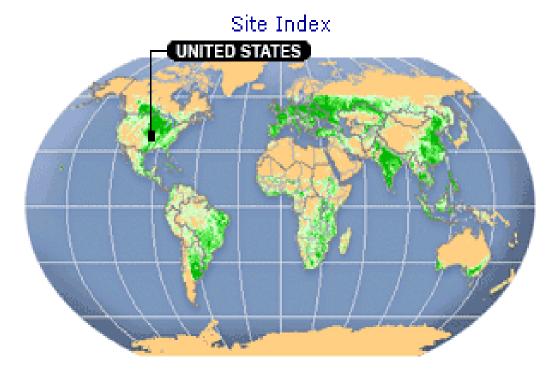
Print a Chart: Select a Subregion

Order by: Subregion | Wheat Production | Rice, Milled Production | Corn Production | Oilseed, Peanut Production | Oilseed, Soybean Production | Cotton Production |

Map shows AOI and charts depict rainfall events.

China Crop Areas **Matrix** of and **Precipitation Precipitation Amounts** ata

Summary: CROP EXPLORER Foreign Agricultural Service Crop Explorer


Explore by Region

North America United States Canada

Central
America
Mexico
Central America
and Caribbean

South America Brazil Northern South America Southern South America

Europe Europe

Middle East Iran, Iraq, Syria and Turkey

Oceania Australia

Former Soviet Union

Kazakstan Russia, Azerbaijan, Armenia and Georgia Ukraine, Moldova, and Belarus

Africa

North Africa Southern Africa East Africa West Africa

Asia

Eastern China South Asia Southeast Asia Central Asia Korea

End CE / RSGIS 11/29/2013

Inputs to USDA Monthly Forecasts

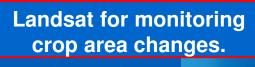
Attaché Reports Official Country Reports

World Weather

USDA's
International
Commodity
Forecasts

Travel Reports

Economic and Trend Analysis


Remote Sensing

Mission: provide timely and informed estimates of world-wide crop production.

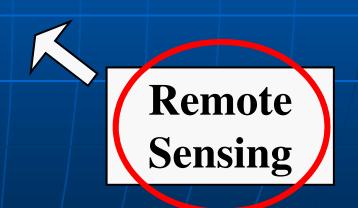
Source of satellite data and imagery?

 It's actually not from one particular satellite but from a several satellites of different capabilities

"All Sources" & "Convergence of Evidence"

MODIS sensor for monitoring relative crop conditions and yields.

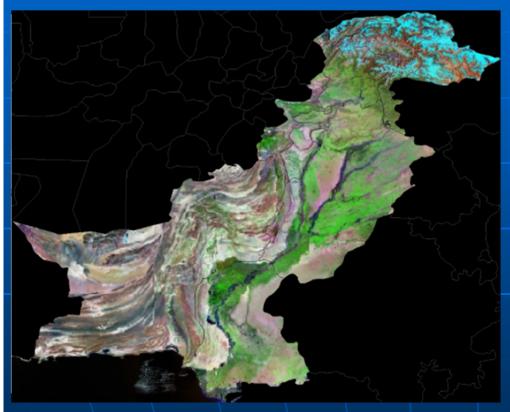
Radar satellite altimeters for monitoring reservoir and lake water levels.


TRMM for monitoring seasonal precipitation

CloudSat

Inputs to USDA Monthly Forecasts

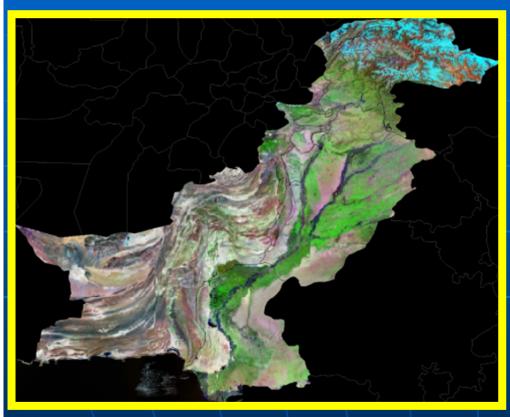
Low and Medium Resolution Sensors


- AVHRR (8 km)
- SPOT-Vegetation (1 km)
- MODIS (250 m)
- AWIFS (56 m)
- Landsat (30 m)

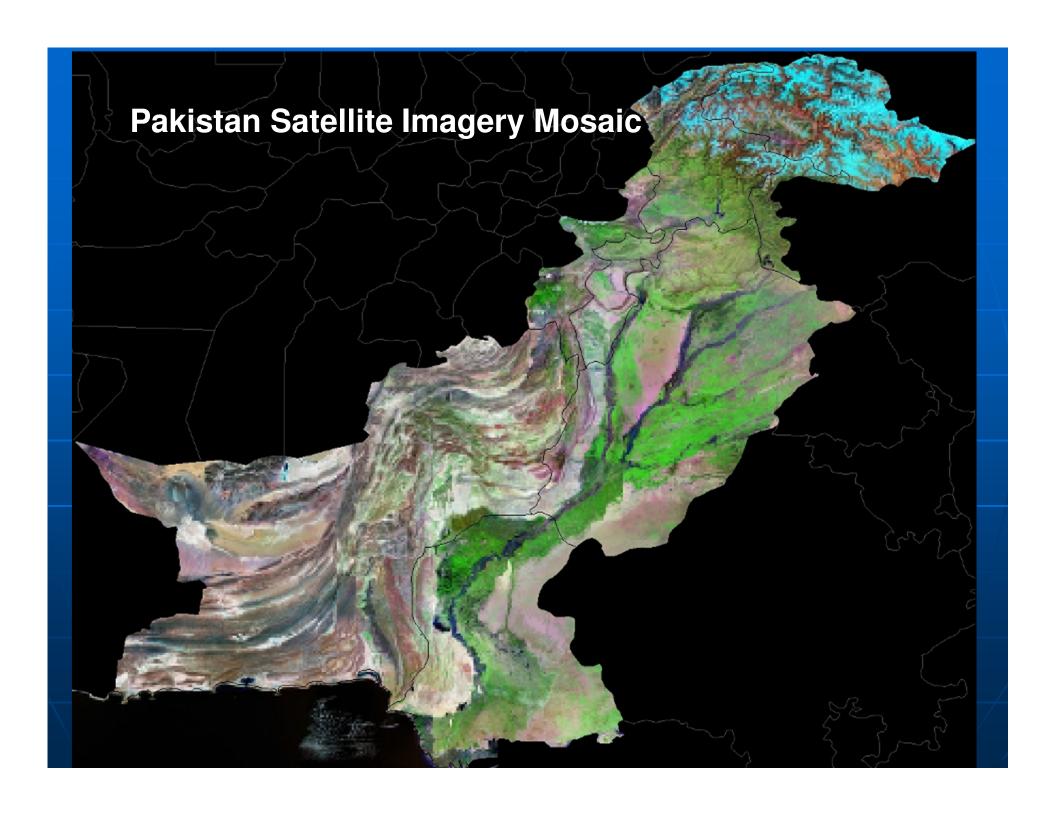
Remote Sensing Analysis Strategies:

Qualitative

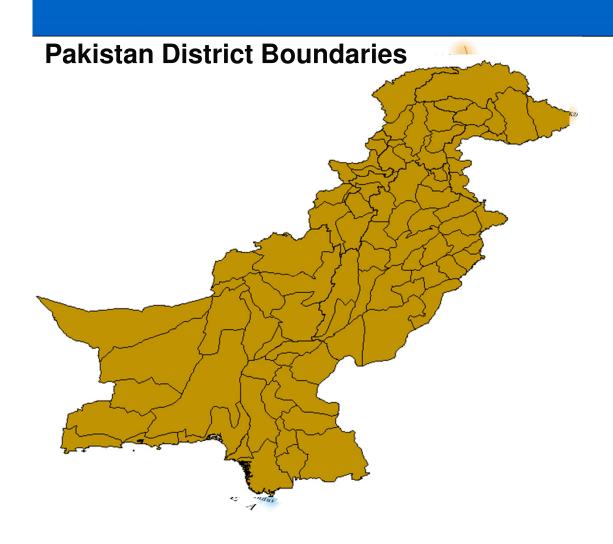
Quantitative

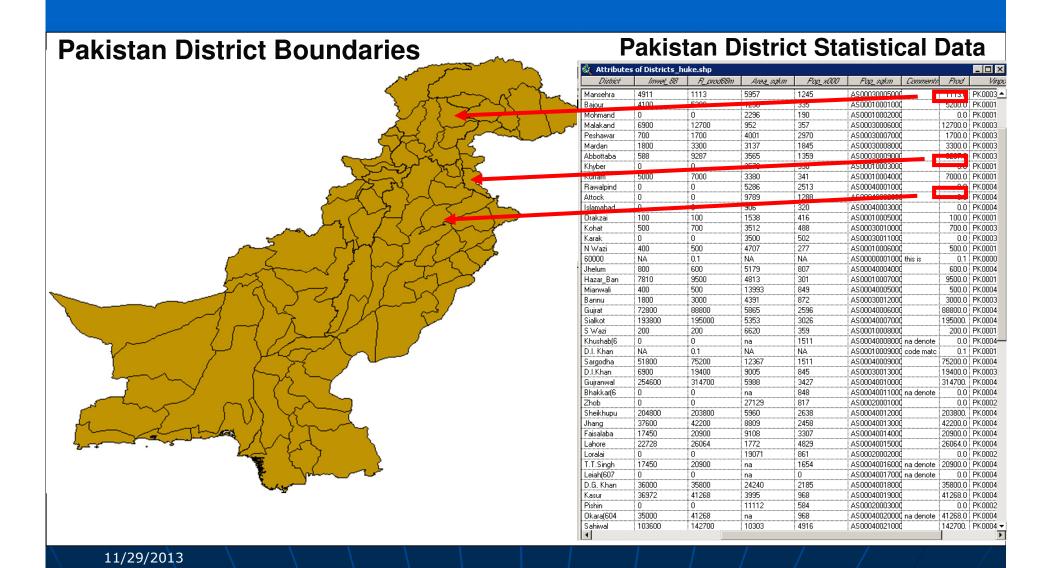


Two examples of techniques employed to monitor crop conditions and ultimately make a monthly forecast update of crop production for each country.

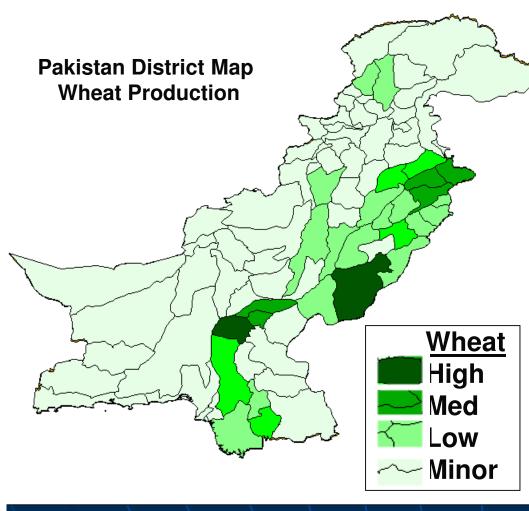

Remote Sensing Strategies:

- Qualitative Analysis Satellite Imagery
- Quantitative Analysis Satellite Imagery

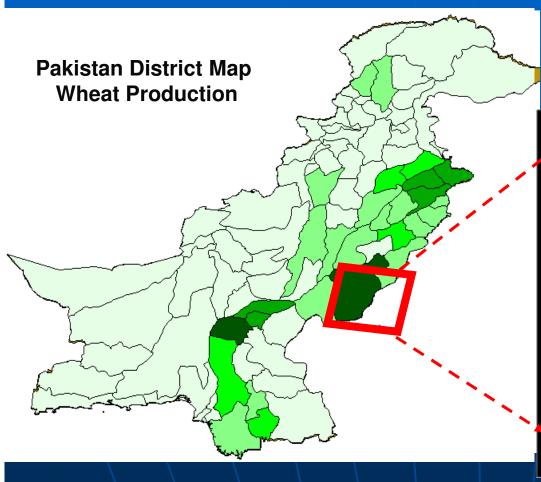


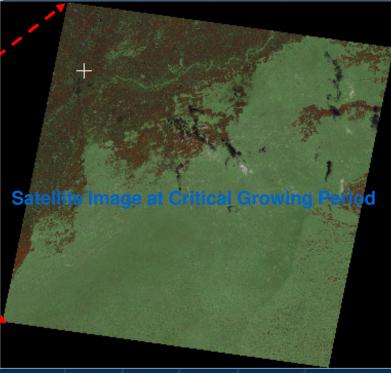

Pakistan Image Mosaic

GIS and Statistical Data Identify Major Wheat Producing Areas

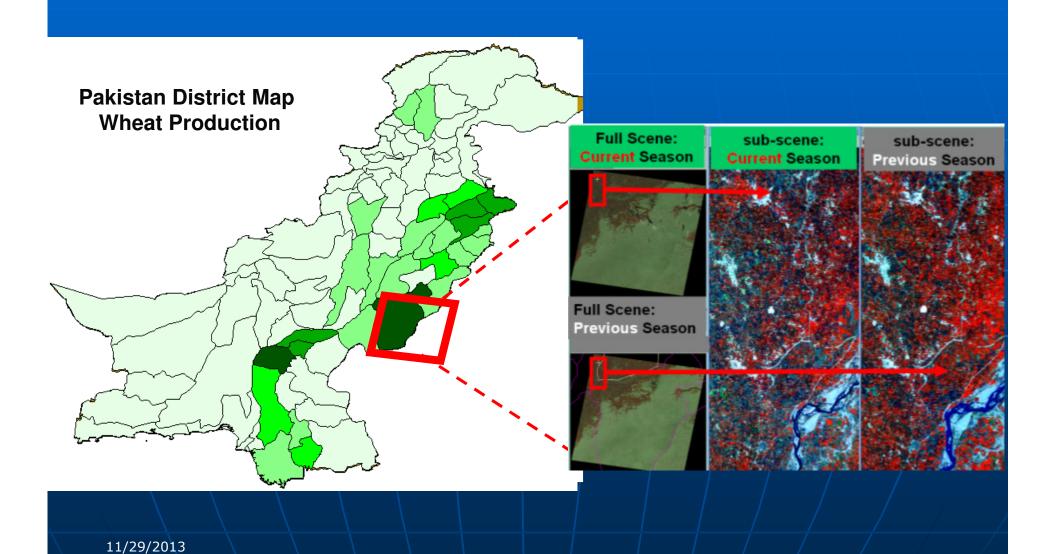


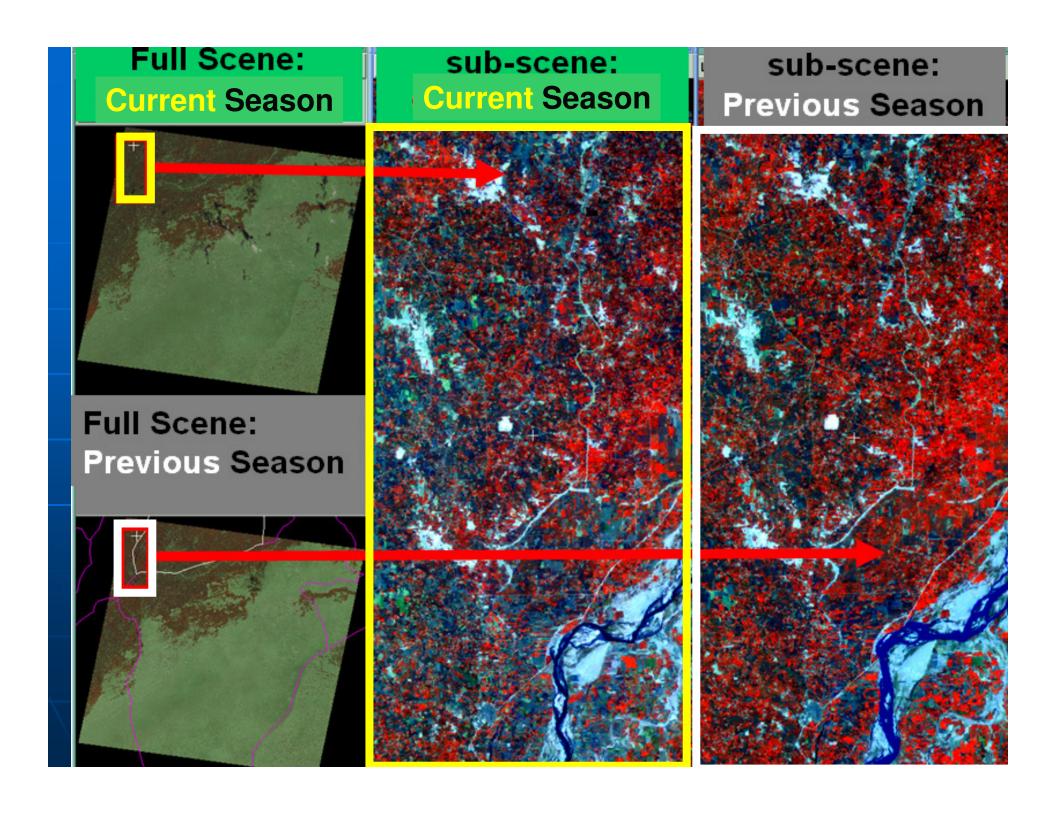
Identify High Production Zones: using GIS and statistical data


Identify High Production Zones: using GIS and statistical data



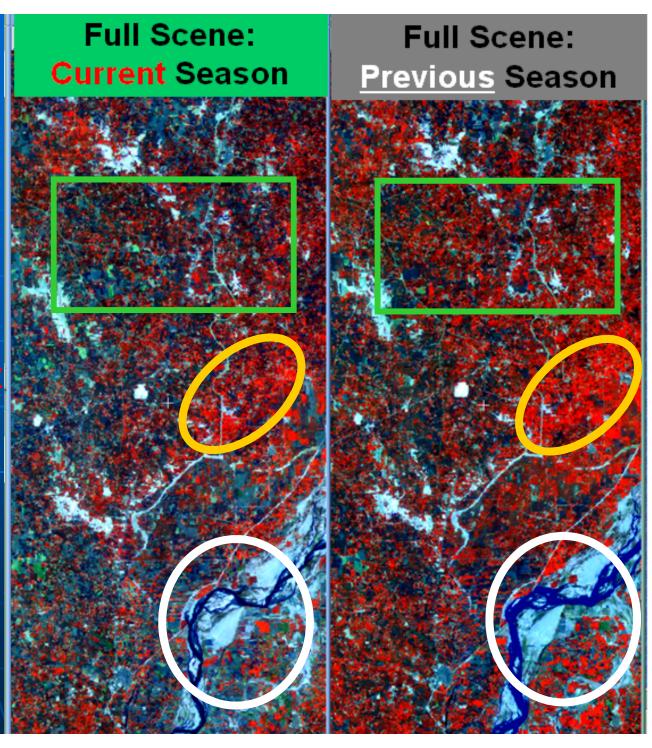
👯 Attribute:	s of Districts_h	uke.shp	ke.shp				
District	Inviet_88	F_prod88m	Area_sgkm	Fop_x000	Pop_sąkm Commen	9 7700	Vinp
Mansehra	4911	1113	5957	1245	AS0003000500¢	1113.0	PK0003_4
Bajour	4100	5200	1290	335	AS00010001000	5200.0	PK0001
Mohmand	0	0	2296	190	AS00010002000	0.0	PK0001
Malakand	6900	12700	952	357	AS00030006000	12700.0	PK0003
Peshawar	700	1700	4001	2970	AS00030007000	1700.0	PK0003
Mardan	1800	3300	3137	1845	AS00030008000	3300.0	PK0003
Abbottaba	588	9287	3565	1359	AS00030009000	9287.0	PK0003
Khyber	0	0	2576	330	AS00010003000	0.0	PK0001
Kurram	5000	7000	3380	341	AS00010004000	7000.0	PK0001
Rawalpind	0	0	5286	2513	AS00040001000	0.0	PK0004
Attock	0	0	9789	1288	AS00040002000	0.0	PK0004
Islamabad	0	Ō	906	320	AS00040003000		PK0004
Orakzai	100	100	1538	416	AS00010005000		PK0001
Kohat	500	700	3512	488	AS00030010000		PK0003
Karak	0	0	3500	502	AS00030011000		PK0003
N Wazi	400	500	4707	277	AS00010006000		PK0001
60000	NA	0.1	NA NA	NA	AS000000001000 this is		PK0000
Jhelum	800	600	5179	807	AS00040004000		PK0004
Hazar Ban	7810	9500	4813	301	AS00010007000		PK0001
Mianwali	400	500	13993	849	AS00040005000		PK0004
Bannu	1800	3000	4391	872	AS00030012000		PK0003
Guirat	72800	88800	5865	2596	AS00030012000	88800.0	
Sialkot	193800	195000	5353	3026	AS00040007000	195000.	4
S Wazi	200	200	6620	359	AS00040007000		PK0001
Khushab(6	0	0	na	1511	AS00040008000 na denote		PK0004-
D.I. Khan	NA NA	0.1	NA NA	NA NA	AS00040000000 ria denote AS00010009000 code mato		PK0001
Sargodha	51800	75200	12367	1511	AS00040009000		PK0004
D.I.Khan	6900	19400	9005	845	AS00040003000	19400.0	
Guiranwal	254600	314700	5988	3427	AS00030013000	314700.	
Bhakkar(6	0	0	na	848	AS00040010000 na denote		PK0004
Zhob	0	0	27129	817	AS00040011000 na denote		PK0004
	204800	203800	5960	2638	AS00020001000	203800.	PK0004
Sheikhupu	37600	42200		2458	AS00040012000 AS00040013000	42200.0	
Jhang			8809				
Faisalaba	17450	20900	9108	3307	AS00040014000		PK0004
Lahore	22728	26064 N	1772	4829	AS00040015000		PK0004
Loralai	0		19071	861	AS00020002000		PK0002
T.T.Singh	17450	20900	na	1654	AS00040016000 na denote	20900.0	
Leiah(607	0	0	na	0	AS00040017000 na denote		PK0004
D.G. Khan	36000	35800	24240	2185	AS00040018000		PK0004
Kasur	36972	41268	3995	968	AS00040019000		PK0004
Pishin	0	0	11112	584	AS00020003000		PK0002
Okara(604	35000	41268	na	968	AS00040020000 na denote		
Sahiwal I	103600	142700	10303	4916	AS00040021000	142700.	PK0004


Identify High Wheat Production Zones



Acquire Satellite Data

Wheat Production Zones to Imagery Analysis and Qualitative Interpretation


Visual Interpretation:

Landsat Satellite Imagery:
Vegetation including field
crops are displayed in red.
Darker tones interspersed in
predominantly red areas are
fallow fields or nonvegetated areas.

Red: dense crop canopy

•Relative Crop Health
•Water Availability

Comparison of two seasons (same crop stage)

Visual Interpretation:

Pakistan Winter crops, in particular wheat, are largely grown under irrigated conditions. In this scene the differences between river are apparent in capacity and flow rate.

River Characteristics:

- Width
- Volume
- Turbidity
- Rate of flow

Full Scene: Full Scene: **Current Season** Previous Season Differences in water level and flow

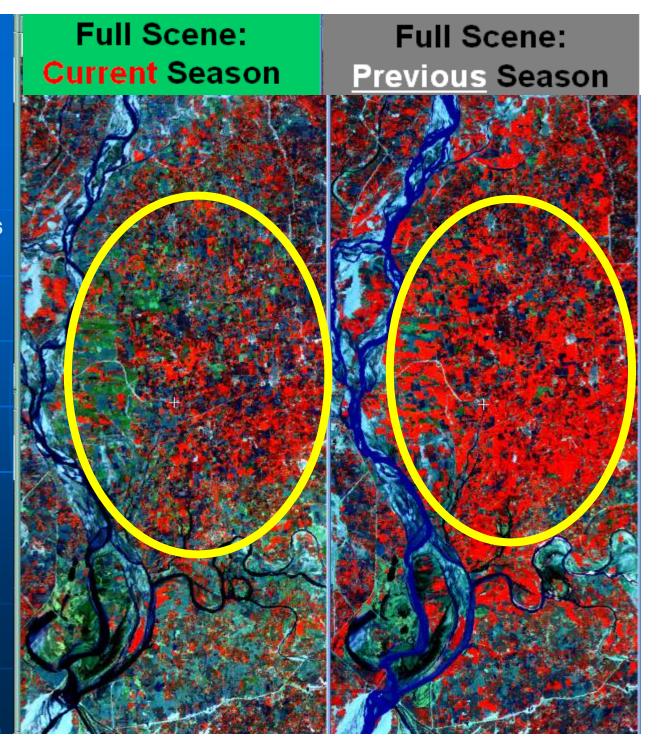
11/29/2013

Visual Interpretation:

Pakistan Winter crops, in particular wheat, are largely grown under irrigated conditions. In this scene the differences between river are apparent in capacity and flow rate.

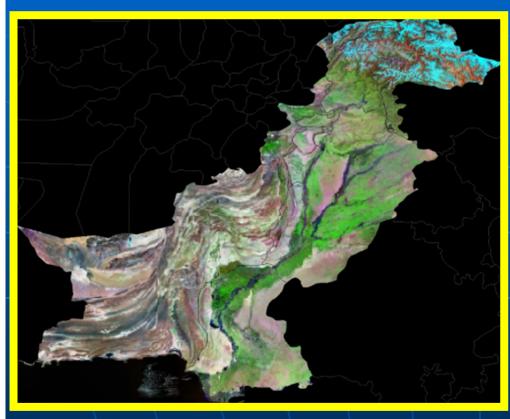
Irrigation Availability:

- Water Storage behind dam
- Control Location
- Major Irrigation River


Full Scene: **Full Scene: Current Season** Previous Season

11/29/2013

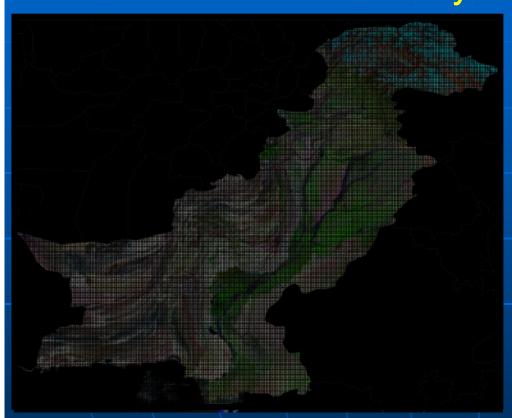
Pakistan Wheat and Irrigation


Visual Comparison Same week different years

This important wheat growing area is clearly showing a very large difference in conditions and vegetation health year-to-year. Given the river level at the irrigation headwork in the lower left of the scenes this lower crop health is mostly likely a result of a reduction in irrigation water availability.

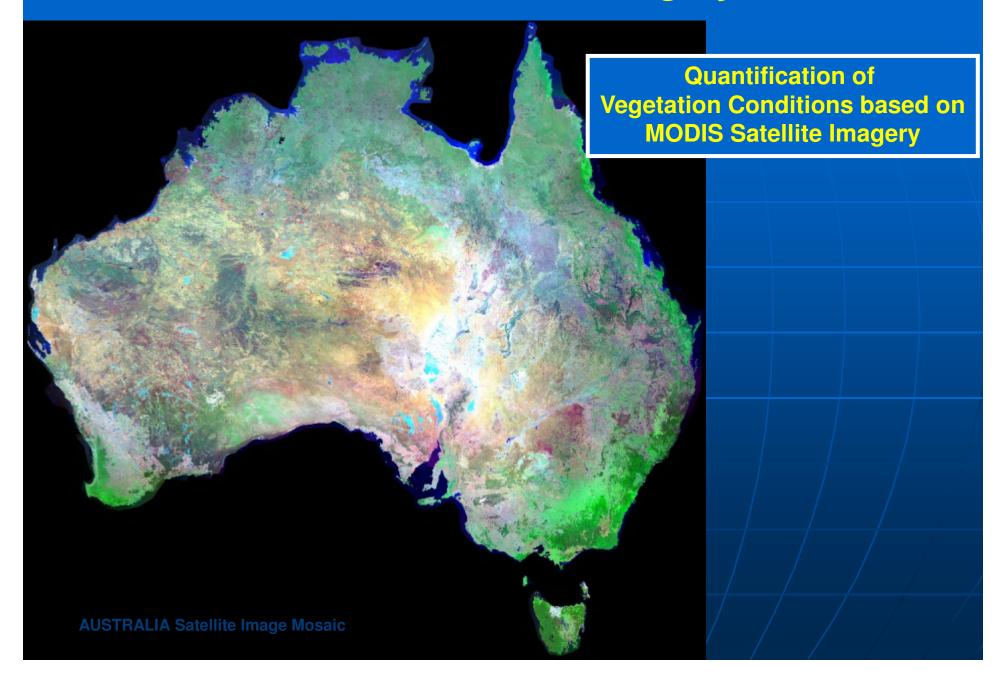
Remote Sensing Strategies:

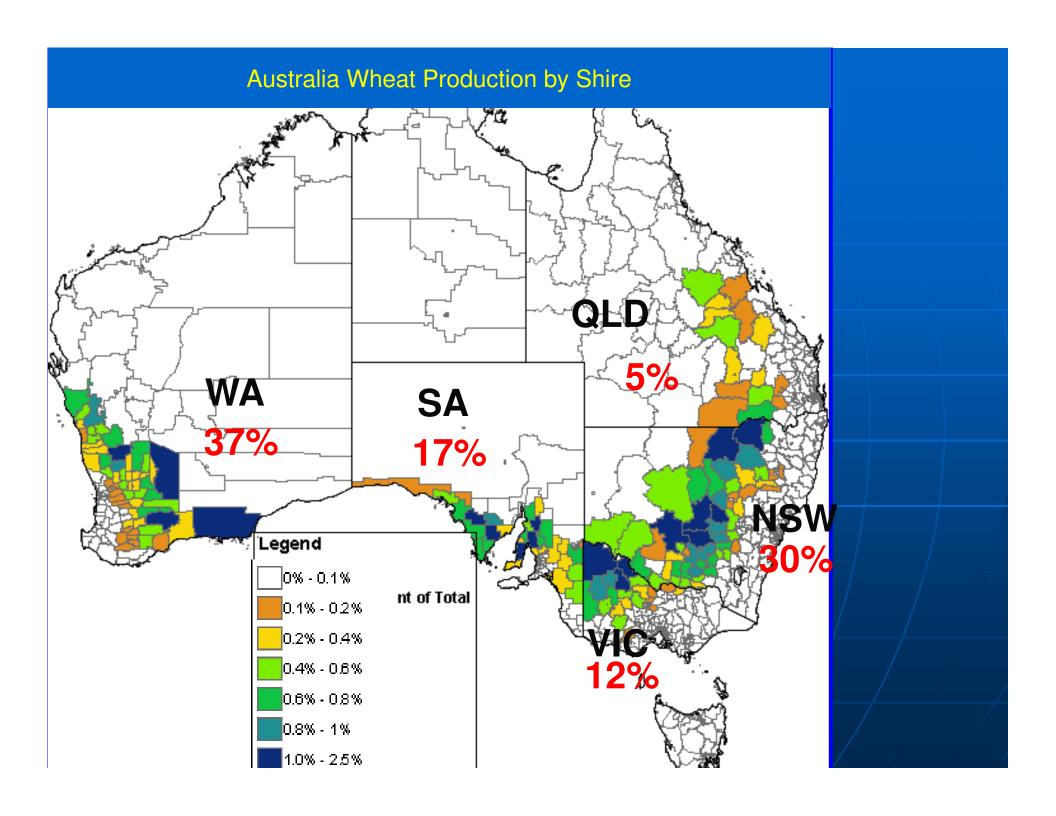
- Qualitative Analysis Satellite Imagery
- Quantitative Analysis Satellite Imagery



Pakistan

Remote Sensing Strategies:


- Qualitative Analysis Satellite Imagery
- Quantitative Analysis Satellite Imagery



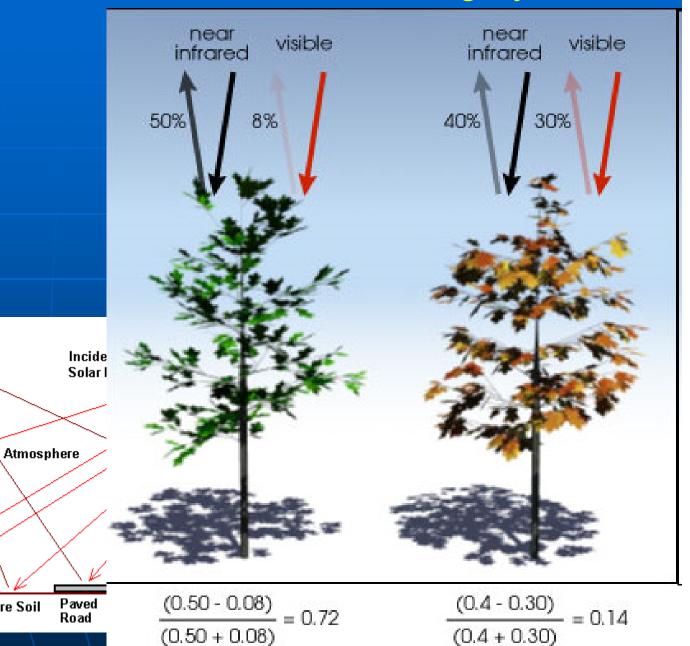
Australia

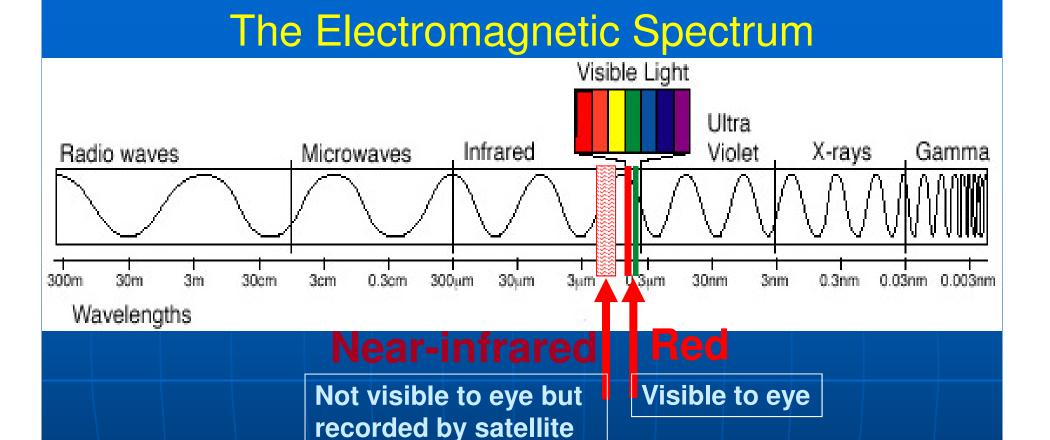
MODIS Satellite Imagery

Quantification of MODIS NDVI over Wheat Areas

Vegetation Health and Satellite Imagery

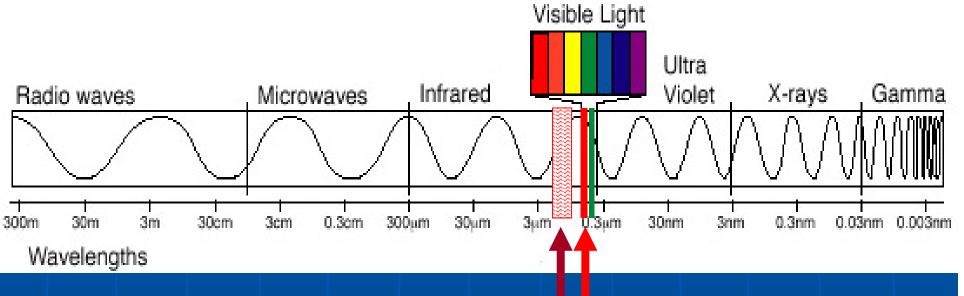
Satellite


Bare Soil


Grass

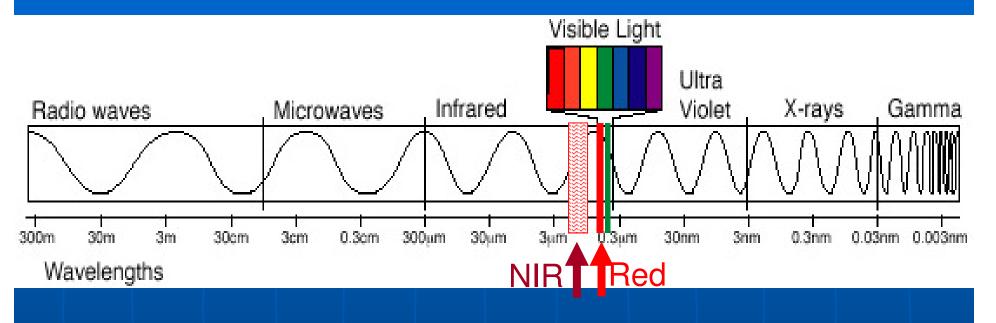
Water

Reflected **Solar Radiation**

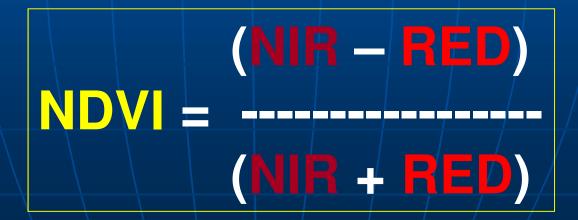

Forest

The relationship between absorption of light energy by plants (specifically near infrared and red light) is the underlying principle in the use of satellite imagery to study vegetation.

Vegetation Index = Ratio

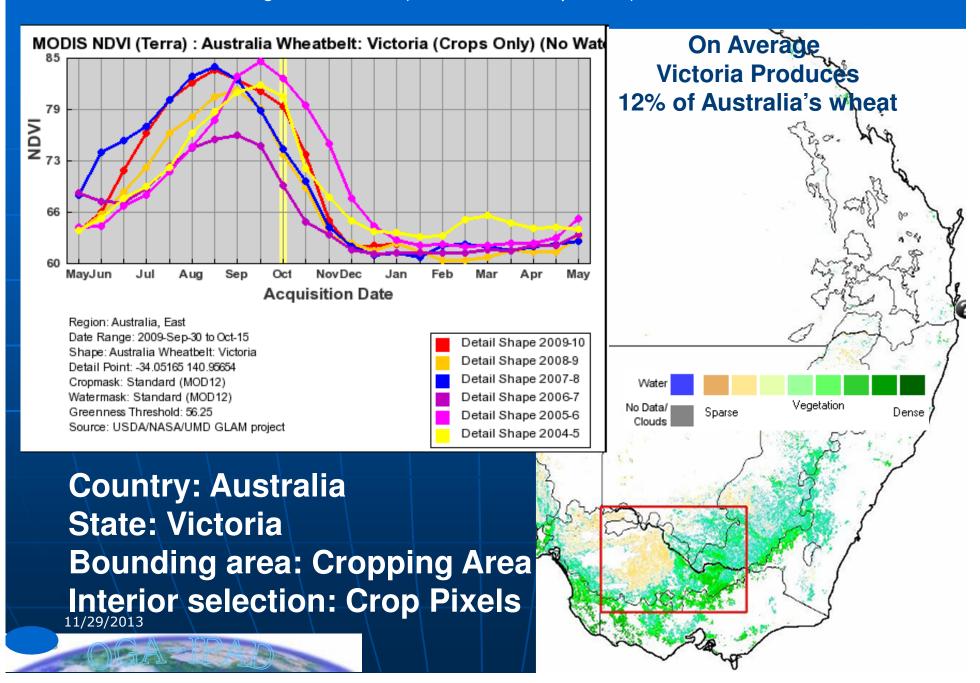


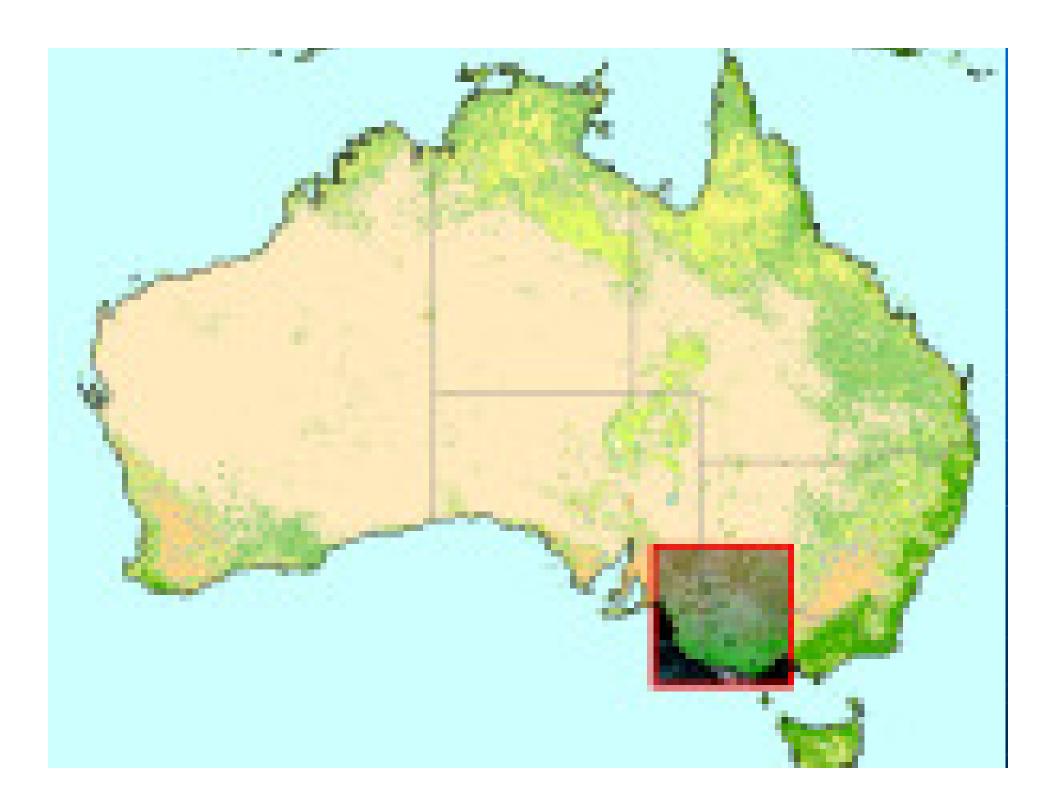
Near-Infrared Red

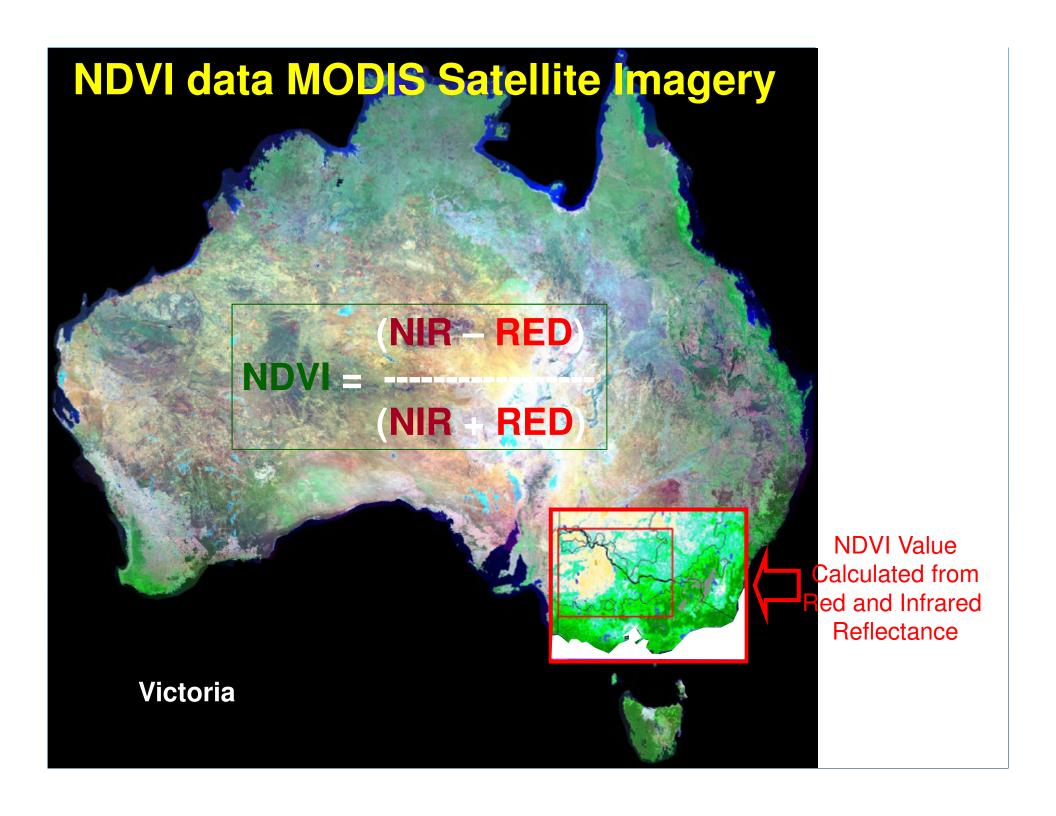

The ratio of reflectance (and absorption) of Near Infrared and Red light is a measure of the photosynthetic activity or health of the plant. A commonly accepted ratio is the:

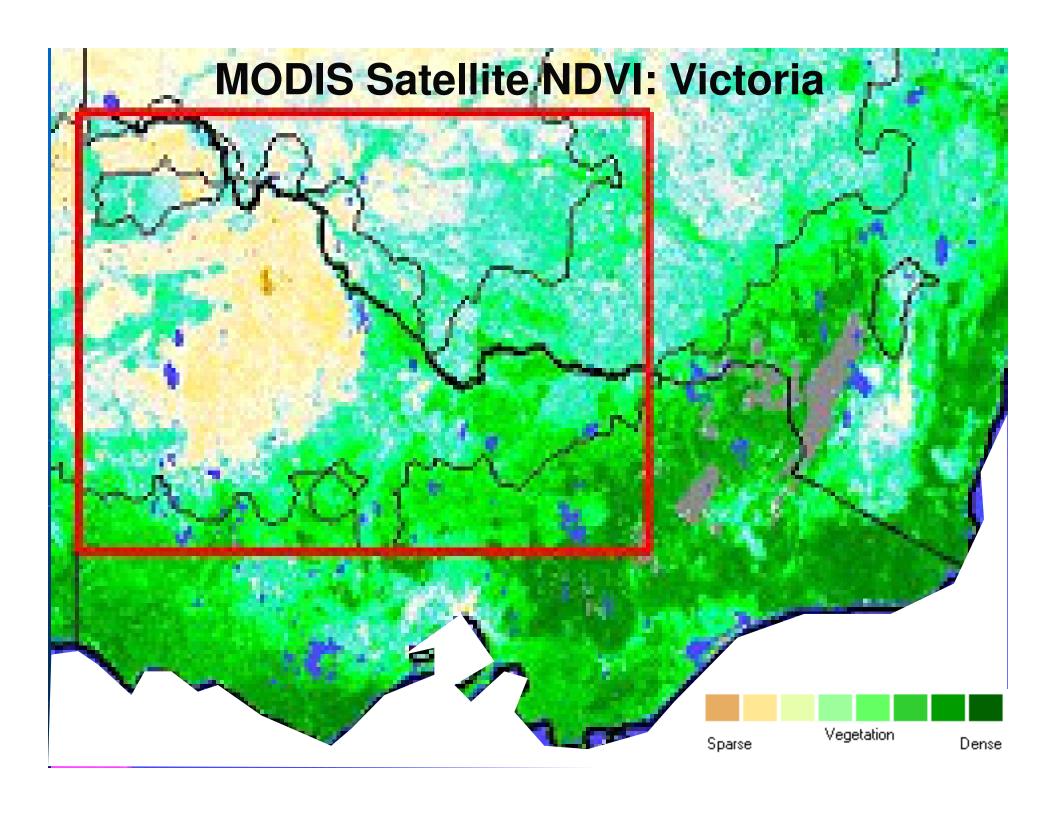
Normalized Difference Vegetation Index (NDVI)

Normalized Difference Vegetation Index (NDVI)

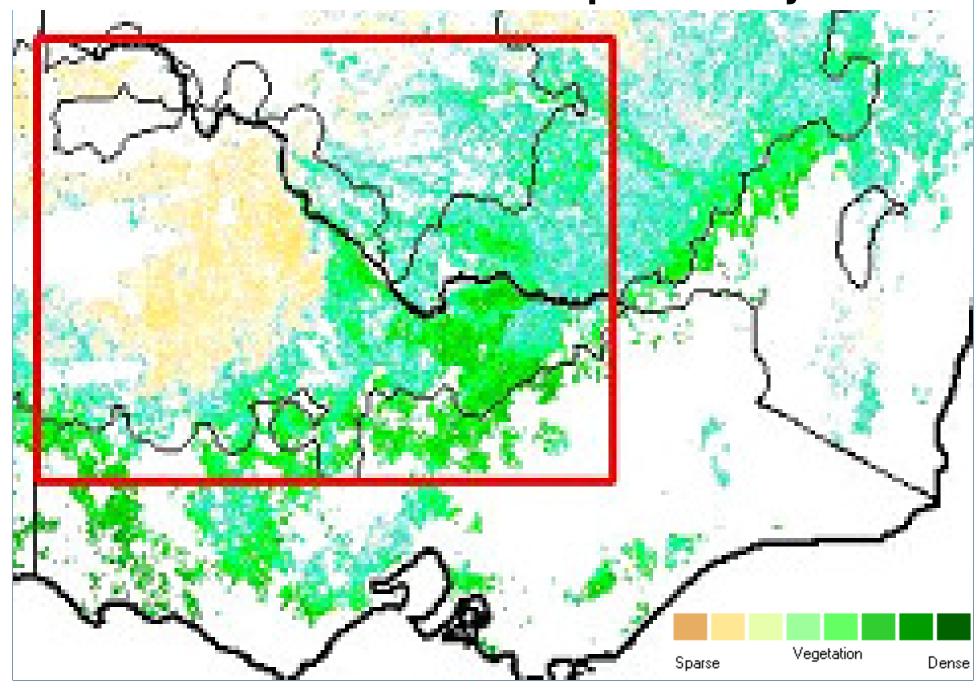

The NDVI is calculated from the reflectance values as follows:

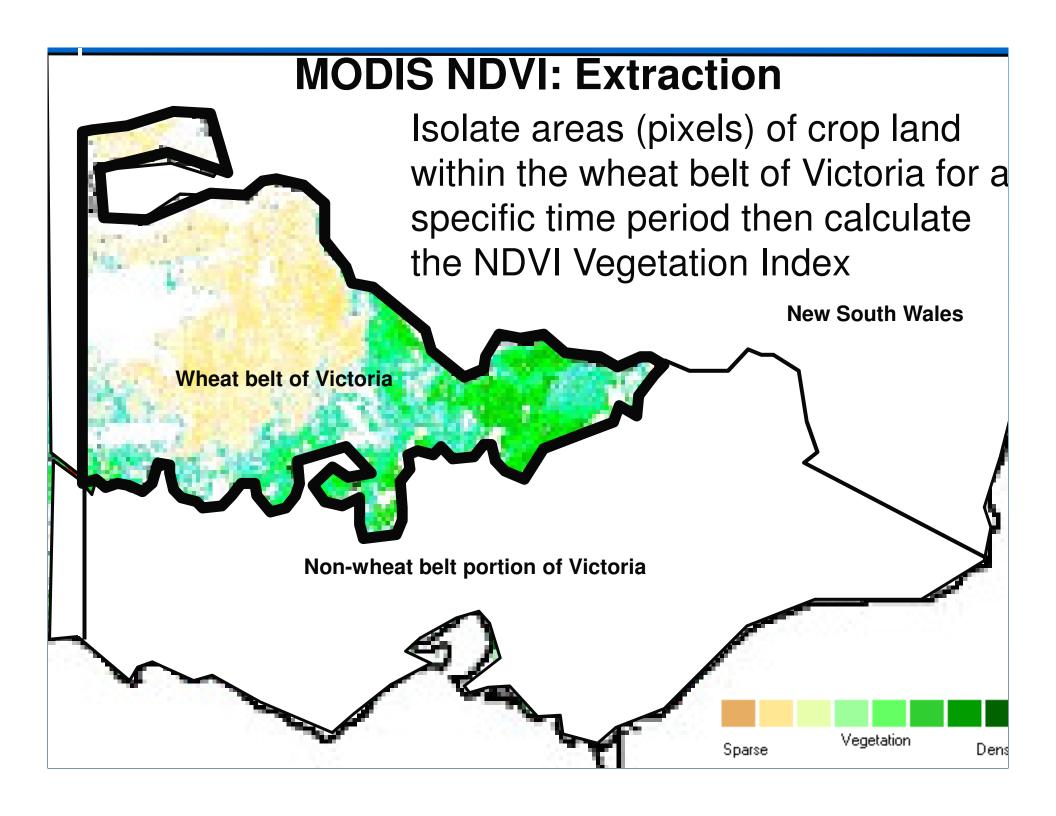


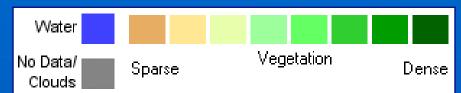

11/29/2013


NASA Earth Observatory: http://earthobservatory.nasa.gov/Laboratory/ICE/tg_panama.html

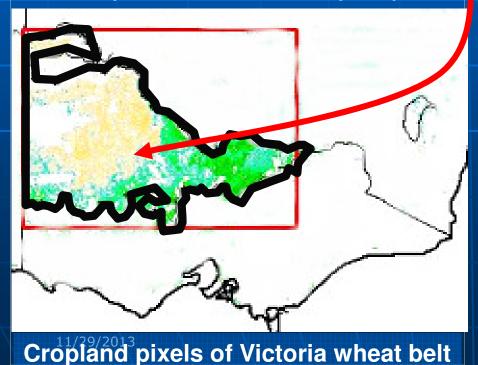
Vegetation Index (Wheat Belt+Crop Mask) VICTORIA







MODIS NDVI for Cropland Only



NDVI value calculated for each MODIS Satellite Image

Pixels color coded to NDVI legend on crop condition for specific area of interest, in this case Victoria and which crop statistical data is available.

This image is the compilation of NDVI values for controlled time period. In this case September 13, 2008 to September 28, 2008; a 16 day composite.

Regional Image Date Select

Click to Select Regional Image Date

```
2008-Sep-13 to Sep-28 = 82

2008-Aug-28 to Sep-12 = 2008-Aug-12 to Aug-27 = 2008-Jul-27 to Aug-11 = 2008-Jul-11 to Jul-26 = 2008-Jun-25 to Jul-10
```

2008-Jun-09 to Jun-24 2008-May-24 to Jun-08 2008-May-08 to May-23

2008-Apr-22 to May-07 2008-Apr-06 to Apr-21

2008-Mar-21 to Apr-05

2008-Mar-05 to Mar-20 2008-Feb-18 to Mar-04

2008-Feb-02 to Feb-17 2008-Jan-17 to Feb-01

2008-Jan-01 to Jan-16

2007-Dec-19 to Jan-03

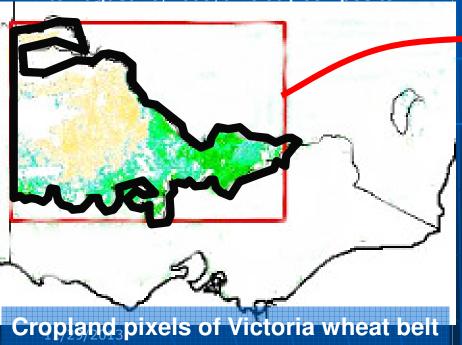
2007-Dec-03 to Dec-18 2007-Nov-17 to Dec-02

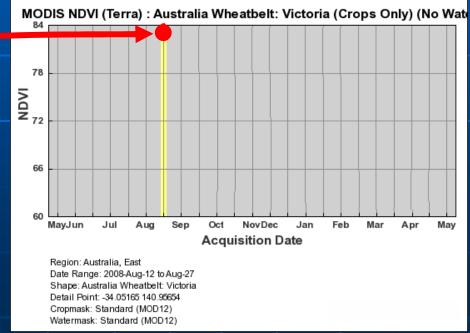
2007-Nov-17 to Dec-02 2007-Nov-01 to Nov-16

2007-NOV-01 to NOV-18 2007-Oct-16 to Oct-31

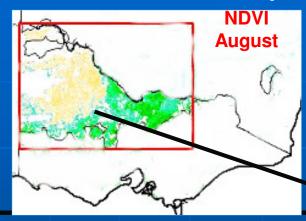
2007-Oct-16 to Oct-31 2007-Sep-30 to Oct-15

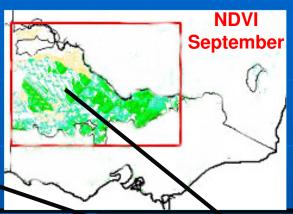
2007-Sep-14 to Sep-29

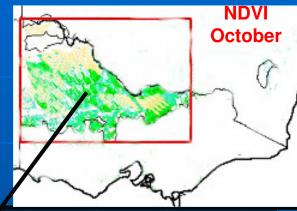

Each image date has a corresponding scene. The numerical NDVI values can then be graphed.


NDVI value calculated for each MODIS Satellite Image

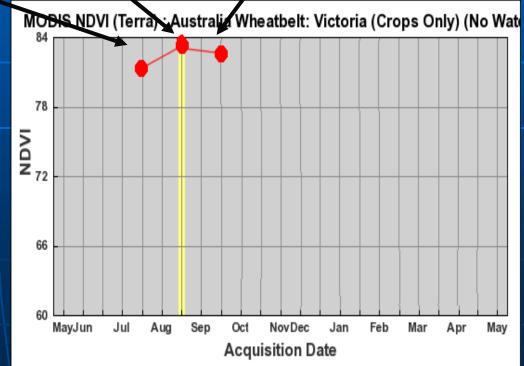
Pixels color coded to NDVI legend on crop condition for specific area of interest, in this case Victoria and which crop statistical data is available.

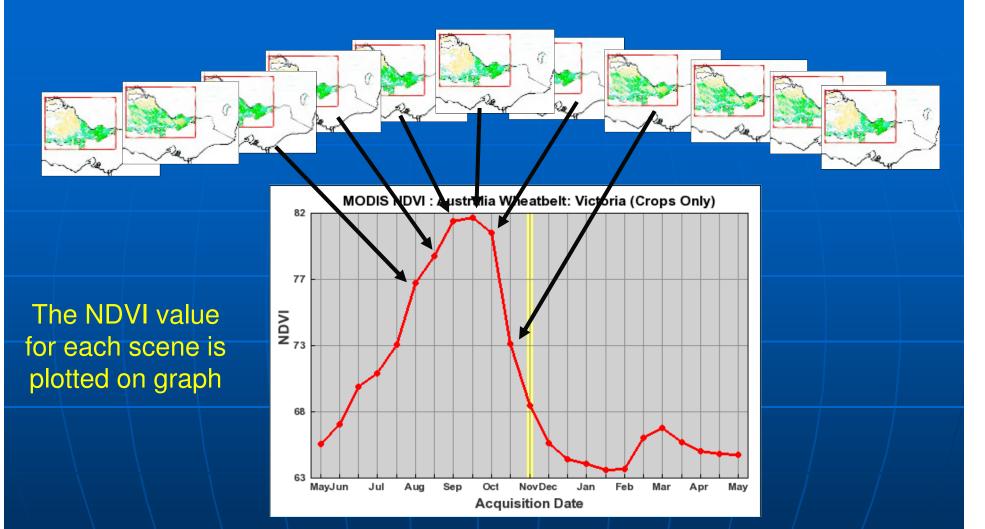

This image is the compilation of NDVI values for controlled time period. In this case August 1, 2008 to August 16, 2008; a 16 day composite.



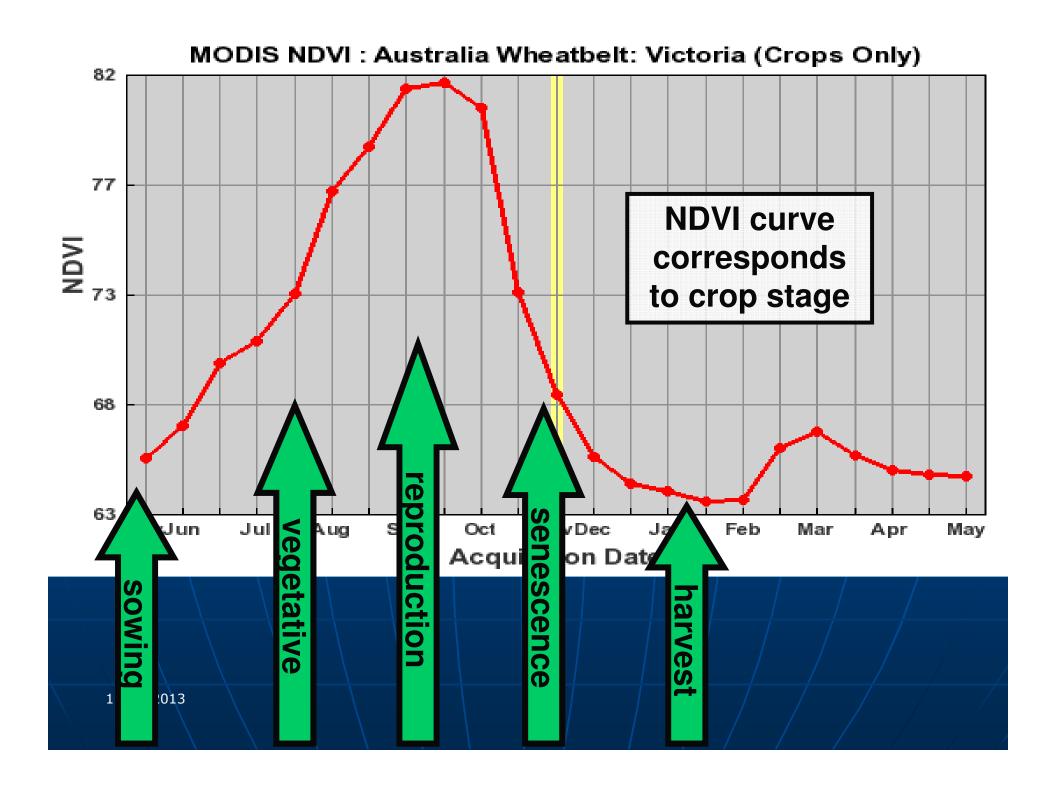


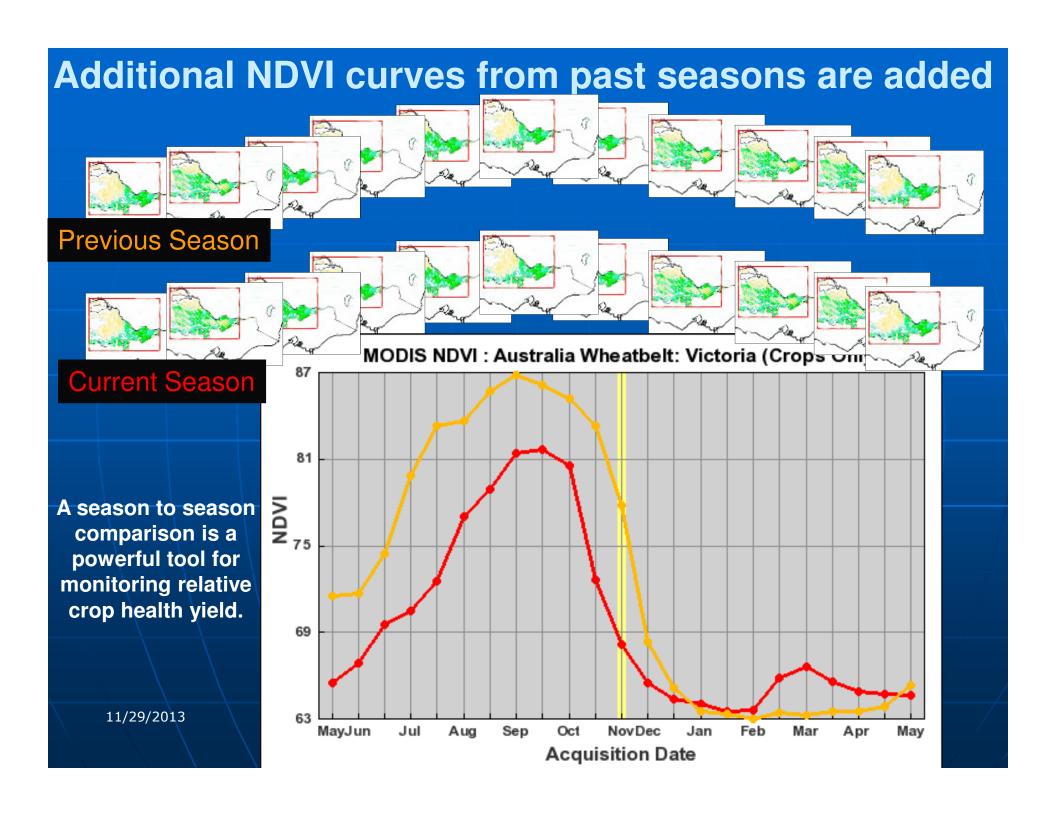
NDVI data MODIS Satellite Imagery


Cropland pixels of Victoria wheat belt



Scenes from multiple time periods creates a time series. Each scenes NDVI value is plotted.


11/29/2013

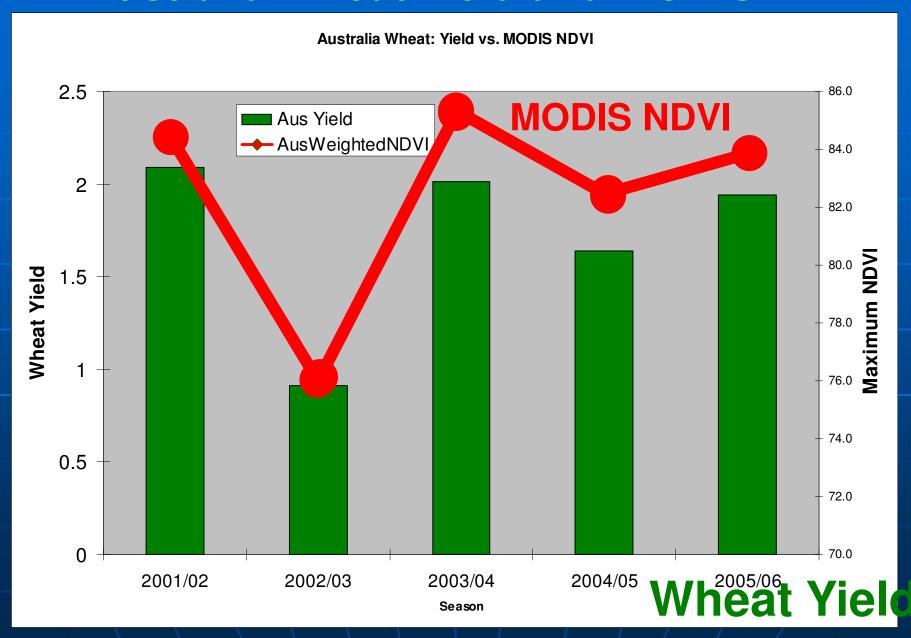

Cropland vegetation index Victoria wheat belt

Multiple MODIS satellite scenes from across the season creates a time series curve.

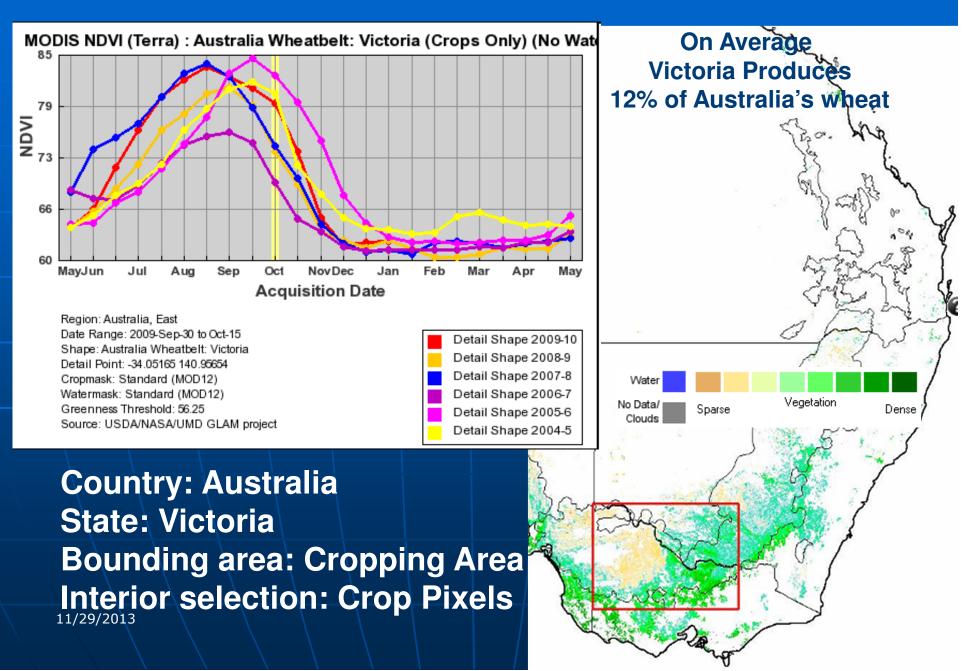
11/29/2013

NDVI data MODIS Satellite Imagery

Further analysis reveals statistically relevant relationship between NDVI curve and final vield

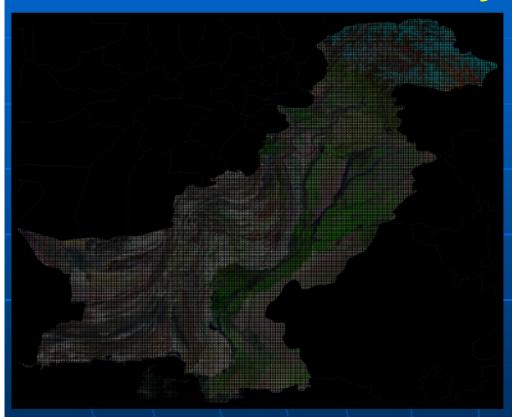


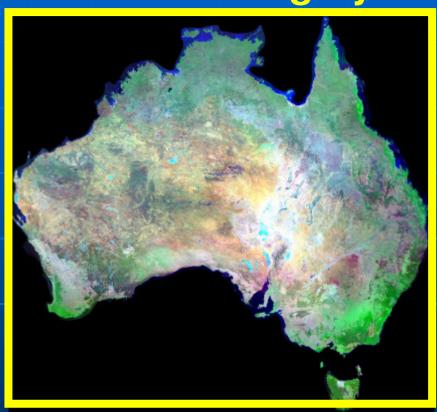
Microsoft Ex													
		<u>File</u> <u>E</u> c	dit	Format <u>T</u>	<u> </u> 00	s <u>D</u> ata	<u>W</u> indo	٥V					
		<i>≌</i> 🖫	89	X 🗈 🖺	3	Ma	7 C	4					
		A26	Ι,	/IEL B	Г	IVICE							
	A		h			MIDI	VA						
	1	STATE	Г	у	AC	DIS MaxV	al						
	2	NSW	П	2.36		84.6594	8						
Ī	3	NSW	П	0.66	L	72.4093	8						
I	4	NSW		1.86	L	85.0167	4						
ı	5	NSW		1.79	L	83.7936	3						
H	6	SA		2.50	L	86.6743							
ı	7	SA		1.00	L	77.2902	_						
	8	SA		1.84	L	83.8410	5						
	9	SA		1.30	L	81.1866	_						
	10	VIC		2.47	L	86.0539	_						
	11	VIC		0.66	L	73.6530	_						
	12	VIC		2.25	L	86.8186	_						
	13	VIC		1.42	L	81.6479	_						
	14	WA		1.81	L	83.7814	5						
	15	WA		0.94	L	80.0079	_						
	16	WA		2.23	L	86.6631	3						
	17	WA		1.70	L	83.7283	7						
	18	QLD		1.51		70.89202							
	19	QLD		1.18		68.4074	_						
	20	QLD		1.44		74.4656	_						
	21	QLD		1.68	L	68.7338	8						
	22			/		<u> </u>							


Excel Forecast Function using Yield-NDVI Relationship

	FZZ * /* QCD										
	А	В	С	D	E	F	G	Н	I	J	K
1	STATE	season	а	У	р	MODIS MaxVal					
2	NSW	2001/02	3.50	2.36	816	84.66			T <i>7</i>) Τ <i>Τ</i> —	
10	SA	2004/05	2.07	1.30	2.69	81.19		7 =	Y-	ኮጀI	
11	SA	2005/06	1.96	2.07	3.49	81.95	L-	•	<u> </u>		
12	VIC	2001/02	1.14	2.47	2.71	86.05					
13	VIC	2002/03	1.23	0.66	0.88	73.65			_	'> √	· "
14	VIC	2003/04	1.42	2.25	3.20	86.82		7.7	Σηγ –	(N 1)	
15	VIC	2004/05	1.37	1.42	1.94	81.65		1864	∠ スレ ̄	しムなり	-4V
16	VIC	2005/06	1.24	2.13	2.64		7	_	E.		· • • ·
17	WA	2001/02	4.38	1.81	7.73	83.78	_0 =				-
18	WA	2002/03	4.43	0.94	3.98	80.01			$n \sum \chi^2$	/▼	ኒ፭
19	WA	2003/04	4.98	2.23	11.09	86.66			のき Y Y 🔭	ートファ	,-
20	WA	2004/05	5.19	1.70	8.80			ŕ	باآخر المستكدات	<u> </u>	L j
21	WA	2005/06	5.07	1.83	9.26						
27	QLD	curr 06/07 fest	0.750			66.530693	67.65	69.12			
28	NSW	curr 06/07 fest	2.850			77.356492	78.14	79.73			
29	VIC	curr 06/07 fcst	1.350			75.89276925	76.45	77.26			
30	SA	curr 06/07 fest	2.300			77.4506055	77.58	78.04			
31	WA	curr 06/07 fest	4.250			78.148611	78.93	80.33			
32			11.500								
33	using current V	'I value for latest	date		use histori	cal AVG VI incre	ase date t	using h	istorical Max V	l increase date	e to date
34		current Mx		curr Mx		SIM avg	SIM avg ir	nc VI	SIM Max VI inc		ic VI
35		FRCSTY	Area	st PROD		FRCSTY	st PROD		FRCSTY	st PROD	
36	QLD	1.333	0.750	1.000		1.359	1.019		1.392		
37	NSW	1.216	2.850	3.467		1.306		NSW	1.489		
38	VIC	0.891	1.350	1.204		0.968	1.306		1.076		
39	SA	0.991	2.300	2.279		1.012	2.328		1.084		
40	WA	0.614	4.250	2.608	VVA	0.767	3.260	VVA	1.039		
41	AUSTRALIA	0.918	11.500	10.558		1.012	11.635		1.187	13.651	
42											
43		correlation									
44	а	0.20									
45	р	0.55	0.30								
46	У	0.92									
47		CTION GIVES SA									Y
	Returns the Pearson product moment correlation coefficient, r, a dimensionless index that ranges										
49	9 from -1.0 to 1.0 inclusive and reflects the extent of a linear relationship between two data sets.										
		\									

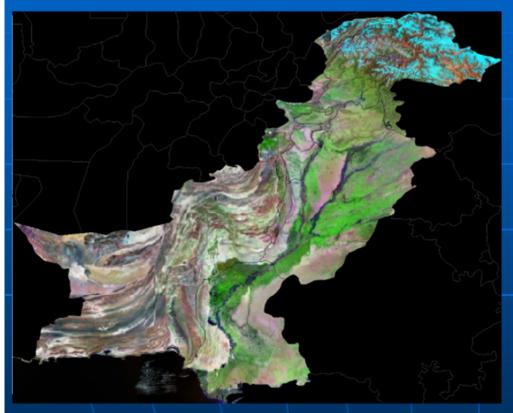
Australia Wheat Yield and MODIS NDVI




Vegetation Index (Wheat Belt+Crop Mask) VICTORIA

Remote Sensing Strategies:

- Qualitative Analysis Satellite Imagery
- Quantitative Analysis Satellite Imagery



Australia

Remote Sensing Analysis Strategies:

Qualitative

Quantitative

Two techniques employed to monitor crop conditions and assist in making a monthly forecast update of crop production for each country.

Summary: Remote Sensing Analysis Strategies

Qualitative

Quantitative

- •These analytical techniques provide exceptional value in representing data visually thereby enhancing the user and analyst experience.
- Enables analysts to more quickly and clearly discern trends, patterns and changes occurring in dynamic agricultural situations.

Contact

Jim Crutchfield
james.crutchfield@fas.usda.gov
202-690-0135
Foreign Agricultural Service (FAS)
Office of Global Analysis (OGA)
International Production Assessment Division (IPA)

- •http://www.pecad.fas.usda.gov/cropexplorer/
- •http://www.pecad.fas.usda.gov/ogamaps/

End / CE 11/29/2013